

NEET-II (2016) TEST PAPER WITH ANSWER & SOLUTIONS (HELD ON SUNDAY 24th JULY, 2016)

- **136.** Hot concentrated sulphuric acid is a moderately strong oxidizing agent. Which of the following reactions does not show oxidizing behaviour?
 - (1) $C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O_3$
 - (2) $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$
 - (3) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
 - (4) $3S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$

Ans. (2)

- **Sol.** $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$ In this reaction, oxidation number of none of the atom is not changed. Hence H_2SO_4 is not acting as oxidising agent.
- **137.** Which of the following pairs of d-orbitals will have electron density along the axes?
 - (1) $d_{z^2}, d_{x^2-v^2}$
- (2) $d_{xy}, d_{x^2-y^2}$
- (3) d_{z^2}, d_{xz}
- (4) d_{xz}, d_{yz}

Ans. (1)

- **Sol.** dz^2 and dx^2-y^2 has electron density concentrated on the axis.
- **138.** The correct geometry and hybridization for XeF_4 are:
 - (1) Planar triangle, sp³d³
 - (2) square planar, sp³d²
 - (3) octahedral, sp³d²
 - (4) trigonal bipyramidal, sp³d

Ans. (3)

- **Sol.** XeF_4 , $AB_4L_2 \rightarrow sp^3d^2$
 - \rightarrow geometry \rightarrow octahedral
 - \rightarrow shape \rightarrow square planar
- **139.** Among the following which one is a wrong statement?
 - (1) SeF₄ and CH₄ have same shape
 - (2) I₃⁺ has bent geometry
 - (3) PH₅ and BiCl₅ do not exist
 - (4) $p\pi$ - $d\pi$ bonds are present in SO_2

Ans. (1)

- **Sol.** (1) SeF₄ -sp³d, lp = 1, shape = see-saw CH_4 -sp³, lp = 0, shape =tetrahedral
 - (2) I_3^+ -sp³, lp =2, shape = bent/angular
 - (3) PH_5 = d-orbital contraction absent $BiCl_5$ = due to inert pair effect (Bi^{+5} act as OA, Cl^- act as RA)
 - (4) $SO_2 : O=S=O$
 - $P\pi$ - $d\pi$, $P\pi$ - $P\pi$ both type bonds are present

- **140.** The correct increasing order of trans-effect of the following species is :
 - (1) $Br^- > CN^- > NH_3 > C_6H_5^-$
 - (2) $CN^- > Br^- > C_6H_5^- > NH_3$
 - (3) $NH_3 > CN^- > Br > C_6H_5^-$
 - (4) $CN^- > C_6H_5^- > Br^- > NH_3$

Ans. (4)

- **Sol.** Trans effect order $C\overline{N} > C_6H_5^- > Br^- > NH_3$
- **141.** Which one of the following statements related to lanthanons is **incorrect**?
 - (1) All the lanthanons are much more reactive than aluminium
 - (2) Ce(+4) solutions are widely used as oxidizing agent in volumetric analysis
 - (3) Europium shows +2 oxidation state.
 - (4) The basicity decreases as the ionic radius decreases from Pr to Lu.

Ans. (1)

- **Sol.** (1) Lanthanon's are less reactive than aluminium due to high IP (Lanthenoid contraction)
 - (2) Ce⁺⁴ is good oxidising agent and easily converted into Ce⁺³
 - (3) $Eu(63) = 4f^7 5d^0 6s^2$, $Eu^{+2} = 4f^7$
 - (4) In lanthenoids series 'Ce' to Lu ionic radius regular decreases and covalent character increase, basic character of hydroxide decrease
- **142.** Jahn-Teller effect **not** observed in high spin complexes of :-
 - $(1) d^4$
- $(2) d^{9}$
- (3) d^7
- $(4) d^8$

Ans. (4)

Sol. John Teller effect explain axial distortion in perfect octahedral geometry. It is present in d⁴ high spin, d⁷ low spin and d⁹ configuations which have odd number of electrons in eg set.

A weak John Teller effect in also present in d^7 high spin complex which has odd number of electrons in the set.

- **143.** Which of the following can be used as the halide component for Friedel-Crafts reaction?
 - (1) Chloroethene
- (2) Isopropyl chloride
- (3) Chlorobenzene
- (4) Bromobenzene

Ans. (2)

Sol.
$$CH$$
 + CH - CH

But in chlorobenzene, Bromobenzene, chloroethene lone pair of halogen are delocalised with π bonds, so attain double bond character.

144. In which of the following molecules, all atoms are coplanar?

Ans. (3)

All carbons are sp² hybridised

145. Which one of the following structures represents nylon 6,6 polymer?

(1)
$$\begin{pmatrix} H_2 & H_2$$

$$(2) \begin{pmatrix} O & H_2 & H_1(CH_2)_6 - NH \\ C & C & N \end{pmatrix}$$

$$(2) \begin{pmatrix} O & H_2 & H_2(CH_2)_6 - NH \\ H_2 & O & N \end{pmatrix}$$

$$(3) \left(\begin{array}{cccc} H_{2} & H_{2} \\ C & H & C \\ C & C \\ NH_{2} & CH_{3} \end{array} \right)_{66}$$

$$(4)\begin{pmatrix} H_2 & H_2 \\ C & H & C \\ C & C \\ NH_2 & NH_2 \end{pmatrix}_{66}$$

Ans. (2) Sol.

146. In pyrrole

The electron density is maximum on :-

- (1) 2 and 4
- (2) 2 and 5
- (3) 2 and 3
- (4) 3 and 4

Ans. (2)

Maximum electron density at (2) and (5) as resonating structures III & IV are more stable than (II) & (V) so are major contributor.

147. Which of the following compounds shall not produced propene by reaction with HBr followed by elimination of direct only elimination reaction?

$$(1) H_{2}C=C=O$$

$$(3) \begin{array}{c} H_2C - CH_2 \\ C \\ H_2 \end{array}$$

Ans. (1)

Sol.

$$\begin{array}{ccc} H_2 C - CH_2 & \xrightarrow{HBr} & CH_{\overline{3}}CH_{\overline{2}}CH_2 & \xrightarrow{Elimination} & H_3C - CH = CH_2 \\ C & & & Br \end{array}$$

$$CH_3$$
— CH_2 — CH_2 — OH — $\stackrel{HBr}{\longrightarrow}$ $\stackrel{Elimination}{\longrightarrow} H_3C$ - CH = CH_2

$$CH_2=C=O$$
 $\xrightarrow{HBr} H_2C=C$ OH \longrightarrow H_3C-C Br

$$CH_3\text{--}CH_2\text{--}Br \xrightarrow{\quad E \text{ lim ination} \quad} CH_3\text{--}CH\text{=-}CH_2$$

NEET-II (2016)

148. Which one of the following nitro-compounds does not react with nitrous acid?

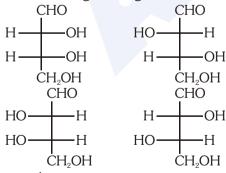
(1)
$$H_3C$$
 H_3C
 H_3C

$$(2) \begin{tabular}{l} H_3C & CH_3 \\ C & C \\ O & NO_2 \\ \end{tabular}$$

(3)
$$H_3C C NO_2$$

(4)
$$H_3C$$
 CH C NO_2

Ans. (1)


Sol. 3°-Nitro compound does not react with HNO_2 because of absence of α -H

- **149.** The central dogma of molecular genetics states that the genetic information flows from :-
 - (1) DNA \rightarrow RNA \rightarrow Proteins
 - (2) DNA \rightarrow RNA \rightarrow Carbohydrates
 - (3) Amino acids \rightarrow Proteins \rightarrow DNA
 - (4) DNA → Carbohydrates → Proteins

Ans. (1)

Sol. DNA Transcription RNA Translation Protein

150. The **correct** corresponding order names of four aldoses with configuration given below

respectively, is :-

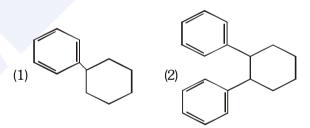
- (1) L-erythrose, L-threose, D-erythrose, D-threose
- (2) D-erythrose, D-threose, L-erythrose, L-threose
- (3) L-erythrose, L-threose, L-erythrose, D-threose
- (4) D-threose, D-erythrose, L-threose, L-erythrose

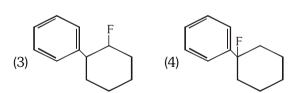
Ans. (2)

Sol.
$$CHO$$
 $H \longrightarrow OH$
 CH_2OH

HO—H H—OH CH₂OH

CHO

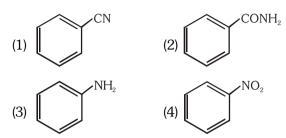

D-Erythrose


D-Threose

L-Threose

151. In the given reaction

the product P is :-


Ans. (1)

Sol.
$$H^{+}$$
 \oplus Carbocation

[Friedel Craft reaction]

152. A given nitrogen-containing aromatic compound A reacts with Sn/HCl, followed by HNO $_2$ to give an unstable compound B. B, on treatment with phenol, forms a beatiful coloured compound C with the molecular formula $C_{12}H_{10}N_2O$. The structure of compound A is :-

Ans. (4)

$$NO_2$$
 $Sn+HCl$
 $Reduction$
 $Aniline$
 NH_2
 $N_2.Cl$
 $N_2.Cl$
 $Reduction$
 NH_2
 $N_2.Cl$
 $N_2.Cl$

Sol.

chloride

p-Hydroxy azo benzene (red colour dye)

153. Consider the reaction

CH₃CH₂CH₂Br + NaCN → CH₃CH₂CH₂CN + NaBr

This reaction will be the fastest in

- (1) N,N'-dimethylformamide (DMF)
- (2) water
- (3) ethanol
- (4) methanol

Ans. (1)

Sol. $CH_3-CH_2-CH_2Br + NaCN \rightarrow CH_3CH_2CH_2CN + NaBr$

This reaction follows by S_N^2 path, which is favoured by polar aprotic solvents like DMF, DMSO, etc.

DMF (Dimethyl formamide)
$$\begin{array}{c} H-C-N-Me \\ \parallel & \parallel \\ O & Me \end{array}$$

154. The **correct** structure of the product A formed in the reaction

$$\frac{H_2(gas, 1 \text{ atmosphere})}{Pd/carbon, \text{ ethanol}} A \text{ is :-}$$

Ans. (4)

Sol.
$$\xrightarrow{\text{H}_2 \text{ gas, (1 atmosphere)}} \xrightarrow{\text{O}}$$

155. Which among the given molecules can exhibit tautomerism?

- (1) Both I and II
- (2) Both II and III
- (3) III only
- (4) Both I and III

Ans. (3)

Sol.
$$H$$
 Enol form

NEET-II (2016)

156. The **correct** order of strengths of the carboxylic acids

is

- (1) III > II > I
- (2) II > I > III
- (3) I > II > III
- (4) II > III > I

Ans. (4)

Sol. Acidic Strength

- **157.** The compound that will react most readily with gaseous bromine has the formula
 - $(1) C_4 H_{10}$
- $(2) C_2H_4$
- $(3) C_3 H_6$
- $(4) C_2 H_2$

Ans. (3)

Sol. Gaseous Bromine reacts with alkene to give allylic substituted product by free radical mechanism

$$CH_3\text{-}CH\text{-}CH_2 \xrightarrow{Br_2(gas)} H_2C\text{-}C \xrightarrow{Br} CH_2$$

- **158.** Which one of the following compounds shows the presence of intramolecular hydrogen bond?
 - (1) Cellulose
 - (2) Concentrated acetic acid
 - (3) H_2O_2
 - (4) HCN

Ans. (1)

Sol. In acetic acid, H_2O_2 and HCN inter molecular hydrogen bond present but in cellulose intramolecular hydrogen bond present.

- **159.** The molar conductivity of a 0.5 mol/dm³ solution of AgNO $_3$ with electrolytic conductivity of 5.76×10^{-3} S cm $^{-1}$ at 298 K is
 - (1) 0.086 S cm²/mol
 - (2) 28.8 S cm²/mol
 - (3) 2.88 S cm²/mol
 - (4) 11.52 S cm²/mol

Ans. (4)

Sol. $C = 0.5 \text{ mol } / \text{ dm}^3$

$$\kappa = 5.76 \times 10^{-3} \text{ S cm}^{-1}$$

T = 298 K

$$\lambda_{\rm m} = \frac{\kappa \times 1000}{M} = \frac{5.76 \times 10^{-3}}{0.5} = 11.52 \ Scm^2/mol$$

- **160.** The decomposition of phosphine (PH₃) on tungsten at low pressure is a first-order reaction. It is because the
 - (1) rate is independent of the surface coverage
 - (2) rate of decomposition is very slow
 - (3) rate is proportional to the surface coverage
 - (4) rate is inversely proportional to the surface coverage

Ans. (3)

- **Sol.** The decomposition of PH₃ on tungsten at low pressure is a first order reaction because rate is proportional to the surface coverage.
- **161.** The coagulation values in millimoles per litre of the electrolytes used for the coagulation of As_2S_3 are given below:
 - I. (NaCl) = 52,
- II. $(BaCl_2) = 0.69$,
- III. $(MgSO_4) = 0.22$

The **correct** order of their coagulating power is

- (1) III > II > I
- (2) III > I > II
- (3) I > II > III
- (4) II > I > III

Ans. (1)

- **Sol.** Coagulation power $\propto \frac{1}{\text{coagulation value}}$
 - So, the order is III > II > I

- **162.** During the electrolysis of molten sodium chloride, the time required to produce 0.10 mol of chlorine gas using a current of 3 amperes is
 - (1) 220 minutes
- (2) 330 minutes
- (3) 55 minutes
- (4) 110 minutes

Ans. (4)

Sol.
$$2Cl^{-} \rightarrow Cl_{2}(g) + 2e^{-}$$

$$W = \frac{E}{96500} \times it$$

$$0.1 \times 71 = \frac{35.5}{96500} \times 3 \times t \text{(sec)}$$

$$t(s) = 6433.33 \text{ sec}$$

- $t(min) = 107.22 min \approx 110 min.$
- **163.** How many electrons can fit in the orbital for which n = 3 and l = 1?
 - $(1)\ 10$
- (2) 14
- (3) 2
- (4) 6

Ans. (3)

Sol.
$$n=3, l=1 \Rightarrow 3p$$

Total 2 electron can fit in the orbital of 3p

164. For a sample of perfect gas when its pressure is changed isothermally from p_i to p_f , the entropy change is given by

(1)
$$\Delta S = nRT \ln \left(\frac{p_f}{p_i}\right)$$
 (2) $\Delta S = RT \ln \left(\frac{p_i}{p_f}\right)$

(3)
$$\Delta S = nR \ln \left(\frac{p_f}{p_i} \right)$$
 (4) $\Delta S = nR \ln \left(\frac{p_i}{p_f} \right)$

Ans. (4)

Sol.
$$\Delta S = nC_{pm}\ell n\frac{T_f}{T_i} + nR\ell n\frac{P_i}{P_f}$$

For isothermal $T_i = T_f$, ln1 = 0

$$\Delta S = nR\ell n \frac{P_i}{P_f}$$

- **165.** The van't Hoff factor (i) for a dilute aqueous solution of the strong electrolyte barium hydroxide is
 - (1) 2

(2) 3

(3) 0

(4) 1

Ans. (2)

Sol. Ba(OH)₂ is strong electrolyte, so its 100% dissociation occurs in solution

$$Ba(OH)_2 \rightarrow Ba^{+2}(aq) + 2OH^{-}(aq)$$

Van't Hoff factor = total number of ions present in solution i =3

- **166.** The percentage of pyridine (C_5H_5N) that forms pyridinium ion $(C_5H_5N^+H)$ in a 0.10 M aqueous pyridine solution $(K_b \text{ for } C_5H_5N = 1.7 \times 10^{-9})$ is
 - (1) 0.77%
- (2) 1.6%
- (3) 0.0060%
- (4) 0.013%

Ans. (4)

Sol. Pyridine $(C_5H_5H_5N)$ is a weak base

$$K_b = C\alpha^2$$

$$\alpha=\sqrt{\frac{1.7\!\times\!10^{-9}}{0.1}}$$

$$\alpha = 1.30 \times 10^{-4}$$

$$\%\alpha = 1.30 \times 10^{-4} \times 100$$

$$\%\alpha = 0.013\%$$

- **167.** In calcium fluoride, having the fluorite structure, the coordination numbers for calcium ion (Ca²⁺) and fluoride ion (F-) are
 - (1) 8 and 4
- (2) 4 and 8
- (3) 4 and 2
- (4) 6 and 6

Ans. (1)

Sol. In CaF_2 , the coordination numbers for

$$Ca^{+2} = 8$$

$$F^{-} = 4$$

NEET-II (2016)

- **168.** If the E_{cell}° for a given reaction has a negative value, which of the following gives the **correct** relationships for the values of ΔG° and K_{eq} ?
 - (1) $\Delta G^{\circ} < 0$; $K_{eq} > 1$
 - (2) $\Delta G^{\circ} < 0$; $K_{eq} < 1$
 - (3) $\Delta G^{\circ} > 0$; $K_{eq} < 1$
 - (4) $\Delta G^{\circ} > 0$; $K_{eq} > 1$

Ans. (3)

Sol.
$$:: E_{coll}^0 = -ve$$

$$\Delta G^0 = -nF E_{\alpha \alpha \beta}^0$$

$$\Lambda G^0 = +ve \Rightarrow \Lambda G > 0$$

$$\therefore \Delta G^0 = -2.303RT \log K_{eq}$$

- **169.** Which one of the following is **incorrect** for ideal solution?
 - (1) $\Delta P = Pobs P_{calculated by Raoult's law} = 0$
 - (2) $\Delta G_{mix} = 0$
 - (3) $\Delta H_{\text{mix}} = 0$
 - $(4) \Delta U_{mix} = 0$

Ans. (2)

Sol. For an ideal solution $\Delta H_{mix} = 0$

$$\Delta U_{\text{mix}} = 0$$

$$\Delta S_{\rm mix} \neq 0$$

According to $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

$$\Rightarrow \Delta G_{mix} \neq 0$$

Incorrect answer, is $\Delta G_{mix} = 0$

- **170.** The solubility of AgCl(s) with solubility product 1.6×10^{-10} in 0.1 M NaCl solution would be
 - (1) $1.6 \times 10^{-11} \text{ M}$
 - (2) zero
 - (3) 1.26×10^{-5} M
 - (4) $1.6 \times 10^{-9} \text{ M}$

Ans. (4)

$$\begin{array}{ccccc} AgCl(s) & & \longrightarrow & Ag^+(aq) & + & Cl^-(aq) \\ a & & 0 & & 0 \\ a-S & & S & & S+0.1 \end{array}$$

$$K_{sp} = 1.6 \times 10^{-10} = [Ag^+] [Cl^-] = S (0.1+S)$$

 $\because K_{sp}$ is small, S is neglected with respect to 0.1 M
 $1.6 \times 10^{-10} = S \times 0.1$
 $S = 1.6 \times 10^{-9}$ M

- 171. Suppose the elements X and Y combine to form two compounds XY_2 and X_3Y_2 . When 0.1 mole of XY_2 weighs 10 g and 0.05 mole of X_3Y_2 weighs 9 g, the atomic weights of X and Y are
 - (1) 20, 30
- (2) 30, 20
- (3) 40, 30
- (4) 60, 40

Ans. (3)

Sol. Let atomic weight of x is A_x and y is A_y

$$n_{xy_2} = 0.1 = \frac{10}{A_x + 2A_y}$$

$$A_x + 2A_v = 100...(1)$$

$$n_{x_3y_2} = 0.05 = \frac{9}{3A_x + 2A_y}$$

$$3A_x + 2A_y = 180 \dots (2)$$

on solving eq. (1) and (2)
 $A_x = 40, A_y = 30$

- **172.** The number of electrons delivered at the cathode during electrolysis by a current of 1 ampere in 60 seconds is (charge on electron = $1.60 \times 10^{-19} \text{ C}$)
 - (1) 3.75×10^{20}
- (2) 7.48×10^{23}
- $(3) 6 \times 10^{23}$
- $(4) 6 \times 10^{20}$

Ans. (1)

Sol.
$$Q = ne$$

$$i.t = n.e$$

$$n = \frac{1 \! \times \! 60}{1.6 \! \times \! 10^{-19}} = 3.75 \! \times \! 10^{20} \; \; \text{electrons}$$

- 173. Boric acid is an acid because its molecule
 - (1) accepts OH⁻ from water releasing proton
 - (2) combines with proton from water molecule
 - (3) contains replaceable H⁺ ion
 - (4) gives up a proton

Ans. (1)

- **Sol.** $B(OH)_3 + H_2O \rightleftharpoons [B(OH)_4]^- + H^+$
- **174.** AlF_3 is soluble in HF only in presence of KF. It is due to the formation of
 - (1) AlH₃
- (2) K[AlF₃H]
- $(3) K_3[AlF_3H_3]$
- $(4) K_3[AlF_6]$

Ans. (4)

- **Sol.** $AlF_3 + 3KF \rightarrow K_3[AlF_6]$
- **175.** Zinc can be coated on iron to produce galvanized iron but the reverse is not possible. It is because
 - (1) zinc has lower negative electrode potential than iron
 - (2) zinc has higher negative electrode potential than iron
 - (3) zinc is lighter than iron
 - (4) zinc has lower melting point than iron

Ans. (2)

- **Sol.** Zinc has higher negative electrode potential than iron, so iron cannot be coated on zinc.
- 176. The suspension of slaked lime in water is known as
 - (1) milk of lime
 - (2) aqueous solution of slaked lime
 - (3) limewater
 - (4) quicklime

Ans. (1)

Sol. Aqueous solution of slaked lime \Rightarrow lime water Suspension solution of slaked lime \Rightarrow milk of lime

- 177. The hybridizations of atomic orbitals of nitrogen in
 - NO_2^+ , NO_3^- and NH_4^+ respectively are
 - (1) sp , sp^2 and sp^3
 - (2) sp^2 , sp and sp^3
 - (3) sp, sp^3 and sp^2
 - (4) sp^2 , sp^3 and sp

Ans. (1)

Sol. $NO_{2}^{+} = sp$

 $NO_3^- = sp^2$

Trigonal planar

 $NH_4^+ = sp^3$

Tetrahedral

Linear

- **178.** Which of the following fluoro-compounds is most likely to behave as a Lewis base ?
 - $(1) CF_4$
- (2) SiF₄
- (3) BF_3
- (4) PF₃

Ans. (4)

- **Sol.** PF₃ act as Lewis base due to present of lone pair on P atom.
- **179.** Which of the following pairs of ions is isoelectronic and isostructural?
 - (1) SO_3^{2-} , NO_3^{-}
- (2) ClO_3^- , SO_3^{2-}
 - (3) CO_3^{2-} , NO_3^{-}
- (4) ClO₃⁻, CO₃²⁻

Ans. (2 & 3)

Sol. (2) In SO_3^{2-} , CIO_3^{-} , No. of electrons = 42,

Shape : Pyramidal

(3) $\ln CO_3^{-2}$, NO_3^{-} , No. of electrons = 32

Shape: trigonal planar

- **180.** In context with beryllium, which one of the following statements is **incorrect**?
 - (1) Its salts rarely hydrolyze.
 - (2) Its hydride is electron-deficient and polymeric.
 - (3) It is rendered passive by nitric acid.
 - (4) it forms Be₂C.

Ans. (1)

Sol. Be salts are covalent nature, so easily hyrolysed.