Area \& volume Solved Sums

1. How many cubes of 3 cm edge can be cut out a cube of 18 cm edge ?
A) 36
b) 216
c) 216
d) 412

Answer:

$$
=>\frac{\text { large side }}{\text { smaller side }}
$$

$=\mathrm{a}^{3} / \mathrm{a}^{3}=>\frac{18 \times 18 \times 18}{3 \times 3 \times 3}=>6 \times 6 \times 6=216$
Ans : 16
2 . Find the volume of a spheare radius 10.5 cm
A) $1286 \mathrm{~cm}^{2}$
b) $4851 \mathrm{~cm}^{2}$
c) $3657 \mathrm{~cm}^{2}$
d) $2456 \mathrm{~cm}^{2}$

Answer:

$$
\begin{gathered}
=>\text { spheare of volume }=\frac{4}{3} X \Pi r 3 \\
=>\frac{4}{3} X \frac{22}{7} X 10.5 \times 10.5=>4851 \mathrm{~cm} 3
\end{gathered}
$$

Ans : $4851 \mathrm{~cm}^{3}$
3 . The metallic spheare of radius 12 cm is melted into three smallest sphere. if the radii of two smaller spheare are 6 cm and 8 cm . the radius of the third spheare is
a) 14 cm
b) 16 cm
c) 10 cm
d) 12 cm

Answer:

$$
\begin{aligned}
&=>= \frac{4 / 3 \times 22 / 7 \times 12 \times 12 \times 12}{\left(\frac{4}{3} \times \frac{22}{7} \times 8 \times 8 \times 8\right)+\left(\frac{4}{3} \times \frac{2}{7} \times 6 \times 6 \times 6\right)+\left(\frac{4}{3} \times \frac{22}{7} \times x \times x \times x \times\right)} \\
& \frac{4 / 3 \times 22 / 7 \times 12 \times 12 \times 12}{\left(\frac{4}{3} \times \frac{22}{7}\right)(512)+(216)+\text { xpower } 3}=\frac{1728}{728+\text { xpower } 3} \\
&=\mathrm{x}^{3}=1000 \Rightarrow>x=10 \mathrm{~cm}
\end{aligned}
$$

Ans: 10 cm
4. For where value of radius of a sphere the volume of the sphere is numerically equal to the surface area of the sphere ?
A) 1
b) 2
c) 3
d) 4

Answer:
\Rightarrow Volume of sphere $=$ surface of sphere
$=>4 / 3 \times \pi \times r^{3}=4 \times \pi \times r^{2}$
$R=3$
Ans $=3 \mathrm{~cm}$
5. What is the least number of square marbles required for a terrace of 15.17 m long and 9.02 m Breath?

Answer:

$$
\begin{aligned}
&=>15.17 \mathrm{~m}=1517 \mathrm{~cm}, \\
&=>9.02 \mathrm{~m}=902 \mathrm{~cm}, \\
& \Rightarrow \text { HCF of } 1517 \text { and } 902 \mathrm{~m} \\
& \Rightarrow \text { AREA of tiles }=41 \times 41 \mathrm{~cm} \\
&=> \frac{1517 \times 902}{41 \times 41}=814
\end{aligned}
$$

Ans : 814
6 . The capacity of a cylinder tank is 246.4 litrs. If the weight is 4 metrs what is the diameter of the base ?
A) 1.4 m
b) 2.8 m
c) 0.14 m
d) 0.28 m

Answer:

$$
\begin{aligned}
& =>\text { volume of cylinder }=\pi r^{2} h \\
=> & 22 / 7 \times r^{2} \times 4=246.4 \\
\Rightarrow & 22 / 7 \times r^{2} \times 400=246400=>(4 \mathrm{~m}=400 \mathrm{~cm})
\end{aligned}
$$

$=r^{2}=196=>r=14 \quad 2 r=28 \mathrm{~cm}$
$28 \mathrm{~cm}=0.28 \mathrm{~m}$
Ans : 0.28 m
7 . If side of an equilant triangle is decreased by 20% its area is decreased by,
A) 42%
b) 36%
c) 34%
d) 20%

Answer:

Equilateral triangle $\frac{\sqrt{3}}{4} a^{2}$
$=>$ Area is not given then take area $=100$
$=>100 \times \frac{80}{100} \times \frac{80}{100}\left[\mathrm{a}^{2}=\right.$ area $\left.=>80 \times 80\right]$
$=>64=>100-64=36 \%$
Ans : 36 \%
8 . The area of a circle is $220 \mathrm{~cm}^{2}$ then the area of the square inscribed in the circle is
A) $180 \mathrm{~cm}^{2}$
b) $140 \mathrm{~cm}^{2}$
C) $135 \mathrm{~cm}^{2}$
d) $250 \mathrm{~cm}^{2}$

Answer:

$$
\begin{gathered}
\text { Area of circle } \pi r^{2}=220 \mathrm{~cm}^{2} \\
R^{2}=70 \mathrm{~cm} \\
=>r=1 / 2(\text { diagonal })--\rightarrow \text { diagonal }=2 r \\
=>\text { area of square }=1 / 2(\text { diagonal })^{2} \\
=>1 / 2 \times 4 r^{2}=2 r^{2}=>2 \times 70
\end{gathered}
$$

Ans : $140 \mathrm{~cm}^{2}$
9. If the radius of a circle is doubled area is multipled by
A) 3
b) 2
c) 4
d) 8

Answer:

$$
=>\text { radius of circle is }=100
$$

$$
\begin{aligned}
&=> 100 \times \frac{200}{100} \times \frac{200}{100}=400 \\
&=>100 \text { to } 400=>4 \text { times }
\end{aligned}
$$

Ans: 4
10. A square is inscribed in a circle whose radius is 4 cm . The area of the portion between the circle and square is
A) $16 \pi-32 \mathrm{~cm}^{2}$
b) $32 \pi-27 \mathrm{~cm}^{2}$
c) $20 \pi+11 \mathrm{~cm}^{2}$
d) $12 \pi-4 \mathrm{~cm}^{2}$

Annswer : R=4cm
$=>$ area of circle $=\pi r^{2}=16 \pi$
$R=1 / 2($ diagonal $)=>$ diagonal $=2 R$
\Rightarrow Area of square $=1 / 2(\text { diagonal })^{2}=1 / 2(8)^{2}$
$=>1 / 2(64)=32 \mathrm{~cm}^{2}$
$=>$ circle and square $=16 \pi-32 \mathrm{~cm}^{2}$
Ans : $16 \pi-32 \mathrm{~cm}^{2}$
11. If length and breath of a rectangle became half and double respectively, Then what will be the \% increase in resultant area?
A) 0 \%
b) 65%
c) 75%
d) 80%

Answer : => length = 100\% breath = 100%

$$
=>100 \times \frac{50}{100} \times \frac{200}{100}=100 \%=>\text { same }
$$

$=>$ Then area $=0 \%$ increase
Ans: 0%
12. The side of a rectangular field is 15 m and one of its diagonal is 17 m then the area of its field is ?
A) $32 \mathrm{~m}^{2}$
b) $120 \mathrm{~m}^{2}$
c) $2 \mathrm{~m}^{2}$
d) $60 \mathrm{~m}^{2}$

Answer:

$=>(\text { Formula })^{2}=(\text { page })^{2}+(\text { page })^{2}$
$(17)^{2}=(15)^{2}+x^{2}$

$$
=289-225=64=x^{2}
$$

$\Rightarrow x^{2}=64=>x=8$
= Area of rectangle
$=15 \times 8=120 \mathrm{~cm}^{2}$
Ans : $120 \mathrm{~cm}^{2}$
13. The perimeter of the four of a cube is 20 cm is a volume be,
A) $215 \mathrm{~cm}^{3}$
b) $200 \mathrm{~cm}^{3}$
c) $125 \mathrm{~cm}^{3}$
d) $800 \mathrm{~cm}^{3}$

Answer:
\Rightarrow perimeter of cube is, 4 a

$=>4 \mathrm{a}=20 \quad=>\mathrm{a}=5$
$>\mathrm{a}^{3}=5 \times 5 \times 5=125 \mathrm{~cm}^{3}$
$>$ volume of cube is $=125 \mathrm{~cm}^{3}$
Ans : $125 \mathrm{~cm}^{3}$
14. What is the volume of a cube whose diagonal measure is $4 \sqrt{3} \mathrm{~cm}$
A) $30 \mathrm{~cm}^{3}$
b) $46 \mathrm{~cm}^{3}$
c) $60 \mathrm{~cm}^{3}$
d) $64 \mathrm{~cm}^{3}$

Answer:
$=>$ diagonal of cube $l=\sqrt{3}$ a

$$
=>4 \sqrt{3}=\sqrt{3} a \quad=>a=4
$$

\Rightarrow volume of cube $=a^{3}$
$a^{3}=4 \times 4 \times 4=64 \mathrm{~cm}^{3}$
Ans: $64 \mathrm{~cm}^{3}$
15 . How many cube of 10 cm edge be put in a cubical box of 1 m edge $>$
A) 200
b) 1000
c) 10
d) 100

Answer:

$$
1 \mathrm{~m}=100 \mathrm{~cm},
$$

\Rightarrow volume of cube $=a^{3}$

$$
=>\frac{\text { large side }}{\text { smallerside }}=\frac{100 \times 100 \times 100}{10 \times 10 \times 10}=1000
$$

Ans : 1000
16. How many cubes 30 cm edge can be cut out of a cubaid $3 \mathrm{~cm} \times 18 \mathrm{Cm} \times 108 \mathrm{Cm}$?
A) 216
b) 326
c) 36
d) 45

Answer:
$\frac{\text { large side }}{\text { smallerside }}=\frac{3 \times 18 \times 108}{3 \times 3 \times 3}=216$
Ans: 216
17. The capacity of a tank of dimension ($8 \mathrm{~m} \times 6 \mathrm{~m} \times 2.5 \mathrm{~m}$) is
A) 120000 litre
b) 100000 litre
c) 50000 litre
d) 80000 litre

Answer:
$=>$ volume of cuboid $=8 \times 6 \times 2.5=20$ metres
$\Rightarrow 1$ meter $=1000$ litre
$=>12 \times 1000=120000$ litre
Ans: 120000 litre .
18. The ratio of the radii of two cylinder $2: 3$ and the ratio of their heights is $5: 8$. The ratio of their volumes will be
A) $4: 9$
b) $9: 4$
c) $20: 27$
d $27: 20$

Answer:

$$
\Rightarrow R_{1}: r^{2}=2: 3, \quad H_{1}: H_{2}=5: 3
$$

Volume of cylinder $=\Pi r^{2} h$

$$
\begin{aligned}
= & >\Pi \times 2 \times 2 \times 5: \Pi \times 3 \times 3 \times 3 \\
& =>20: 27
\end{aligned}
$$

Ans : 20 : 27
19. One side of a parallogram is 18 cm and its distance from the opposite is is 18 cm . The area of the parallogram is
A) $160 \mathrm{~cm}^{2}$
b) $210 \mathrm{~cm}^{2}$
c) $144 \mathrm{~cm}^{2}$
d) $140 \mathrm{~cm}^{2}$

Answer:
$=>$ area of parrallogram $=\mathrm{bXh}$

$=>18 \times 8=64 \mathrm{~cm}^{2}$
Ans: $64 \mathrm{~cm}^{2}$
20. Find the length of athe altitude of an equilateral triangle of side $3 \sqrt{3} \mathrm{~cm}$
A) 27 cm
b) $9 \sqrt{3} \mathrm{~cm}$
c) 9 cm
d) 4.5 cm

Answer:
$\Rightarrow>$ equilateral side $=3 \sqrt{3} \mathrm{~cm}$
$=>$ area of equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$
$=\frac{\sqrt{3}}{4}(3 \sqrt{3})^{2}=>\frac{\sqrt{3}}{4} X(9 \times 3)=>=\frac{27 \sqrt{3}}{7}$
$=>1 / 2 \times b \times h=\frac{27 \sqrt{3}}{4}[\mathrm{~h}-$ altitude $]$
$=>\frac{1}{2} X 3 \sqrt{3} X h=\frac{27}{4} \sqrt{3} \Rightarrow \mathrm{~h}=\frac{27 \sqrt{3} \times 2}{3 \sqrt{3} X 4}$
$=>h=4.5 \mathrm{~cm}$
Ans: 4.5 cm
21 . The length of rectangle is increased by 60% by what percent would the width have to be increased so as to maintain the same area .
A) 37.5%
b) 60%
c) 75%
d) 120%

Answer:

$$
\begin{aligned}
&=>\text { length }=60 \% \text { increase }=160 \% \\
&=>100 \times \frac{160}{100} \times \frac{x}{100}=100 \quad=>x=\frac{100 \times 100 \times 100}{100 \times 160} \\
&=>x=62.5 \quad=> 100-62.5 \%=>37.5 \%
\end{aligned}
$$

Ans : 37.5\%
22 . a cone a hemisphere and a cylinder stands on equal base and have the same height Find the ratio of their volume
A) $3: 2: 1$
b) $1: 2: 3$
c) $3: 1: 2$
d) $1: 3: 2$

Answer:

$$
\Rightarrow \text { Volume of cone }=\frac{1}{3} \Pi r^{2} h
$$

$$
=>\text { volume of hemisphere }=\frac{2}{3} \Pi r^{2} h \quad R=h
$$

Volume of cylinder $=\Pi r^{2} h$
Cone : hemisphere : cylindre
$\frac{1}{3} \Pi r^{2} \mathrm{Xr} \quad: \quad \frac{2}{3} \Pi r^{3}: ~ \Pi r^{2} \mathrm{Xr}$

$$
\begin{aligned}
& =>\frac{1}{3}: \frac{2}{3} \quad: \frac{1}{1} \\
& \Rightarrow 1: 2: 3=\text { ratio }
\end{aligned}
$$

Ans:1 : 2 : 3
23. AS air is pumped in to a spherical balloon the radius increase from 6 cm to 12 cm . The ratio between volume of the balloon in the beginning and the end is
A) $1: 8$
b) 2 : 7
c) $8: 1$
d) 2 : 3

Answer:

$$
\begin{aligned}
& =>\text { volume of sphere }=\frac{4}{3} \Pi r^{3} \\
= & >\frac{4}{3} \times \Pi \times 6 \times 6 \times 6 \quad: \frac{4}{3} \times \Pi \times 12 \times 12 \times 12 \\
=> & 1: 8 \\
\text { Ans } & : 1: 8
\end{aligned}
$$

24 . The difference between two parallel sides of a trapezium is 4 cm . The perpendicular distance is 19 cm . If the area of the trapezium is $475 \mathrm{~cm}^{2}$ Find the length of the parallel side
A) $20 \mathrm{~cm}, 16 \mathrm{~cm}$
b) $27 \mathrm{~cm}, 23 \mathrm{~cm}$
c) $27 \mathrm{~cm}, 20 \mathrm{~cm}$
d) $25 \mathrm{~cm}, 23 \mathrm{~cm}$

Answer:

$$
\begin{aligned}
& \Rightarrow \text { Parallel side }=a, b=>a=a-4 \\
= & >h=19 \mathrm{~cm}, \\
= & >\text { Area of trapezium }=\frac{1}{2} X(a+b) \\
= & >1 / 2 \times 19 \times[a+(a-4)]=475 \\
= & >1 / 2 \times 19(2 a-4)=475=>1 / 2 \times 38 a-76=475 \\
= & >38 a=1026=>a=1026 / 3=>a=27 \\
B & =27-4=23
\end{aligned}
$$

Ans: 27, 23 cm
25 . The perimeter of two squares are 40 cm and 32 cm . Find the perimeter of a third square whose area is equal to the difference of the area of two squres.
A) 40 cm
b) 36 cm
c) 12 cm
d) 24 cm

Answer:
$=>$ perimeter of square $=4 a$
$=>4 a=40 \quad a=10 \quad 4 a=32 \quad a=8$
$=>$ area of square $=a^{2}$
$=>a^{2}=10 \times 10=100: a^{2}=8 \times 8=64$
$=>100-64=36 \quad \Rightarrow \mathrm{a}=6$
\Rightarrow Third square $4 \mathrm{a}=4 \times 6=24 \mathrm{~cm}$
Ans : 24 cm
26. A river of 1.5 m deep and 36 m wide is flowing at the rate of 3.5 km per hour. The amount of water thet runs into the sea per minute is
A) $3150 \mathrm{~m}^{3}$
b) $31500 \mathrm{~m}^{3}$
c) $6300 \mathrm{~m}^{3}$
d) $63000 \mathrm{~m}^{3}$

Answer:

$$
H=1.5 \mathrm{~m} \text { deep }, \quad b=36 \mathrm{~m} \text { wide }
$$

$=>\mathrm{bXh}=1.5 \times 3.6=54 \mathrm{~m}$,
$=>1 \mathrm{~km}=1000 \mathrm{~m}, 1$ hour $=60$ minute
$=>\frac{3.5 \times 1000}{1 \times 60}=\frac{3500}{60}=\frac{350}{6} \mathrm{~m} / \mathrm{min}=1$
$=>1 \mathrm{XbXh}=$ amount of water
$=>\frac{350}{6} X 54=3150 \mathrm{~m}^{3}$
Ans : $3150 \mathrm{~m}^{3}$
27. The total surface area of a solid hemisphere of a diameter 2 cm is equal to ,
A) $12 \mathrm{~cm}^{2}$
b) $12 \Pi \mathrm{~cm}^{2}$
c) $4 \Pi \mathrm{~cm}^{2}$
d) $3 \Pi \mathrm{~cm}^{2}$

Answer:

$$
\text { Diameter } 2 r=2 \mathrm{~cm}=>\quad r=1 \mathrm{~cm}
$$

$=>$ total surface area of hemisphere $=3 \Pi r^{2}$
$=>3 \mathrm{X} \Pi \mathrm{X} 1 \mathrm{X} 1=3 \Pi \mathrm{~cm}^{2}$
Ans : $3 \Pi \mathrm{~cm}^{2}$
28 . The radius and height of cylinder and cone are equal. If the volume of cylinder is 120 cm ? Then the volume of cone is
A) $90 \mathrm{~cm}^{2}$
b) $30 \mathrm{~cm}^{2}$
c) $30 \mathrm{~cm}^{2}$
d) $100 \mathrm{~cm}^{2}$

Answer:
\Rightarrow Volume of cylinder $=\Pi r^{2} h$

$$
\Pi r^{2} \mathrm{~h}=120 \mathrm{~cm}^{3}
$$

$=>$ volume of cone $=1 / 3 \Pi r^{2} h$
$\frac{1}{3} X \Pi r^{2} h=>1 / 3 \times 120=40 \mathrm{~cm}^{3}$
Ans: $40 \mathrm{~cm}^{3}$
29. The raddi of two cones are in the ratio $2: 1$ their volumes are equal. Find the ratio of their heights
A)) $1: 8$
b) $1: 8$
c) $2: 1$
d) $4: 1$

Answer:
$=>R 1: R 2=2: 1 \quad, \quad$ volume are equal
$\frac{1}{3} \Pi \mathrm{X} 2 \mathrm{X} 2 \mathrm{Xh}_{1}: \frac{1}{3} \Pi \mathrm{X} 1 \times 1 \mathrm{Xh}_{2}$
$=>4 h_{1}: 1 h_{2}$
$=>h_{1}: h_{2}=1: 4$
Ans: 1:4
30 . the rectangular piece of paper has length $14 \Pi \mathrm{~cm}$ and breath $\frac{10}{\Pi} \mathrm{~cm}$. A cylinder is formed by one rolling of the paper along its breath, The volume of the cylinder is
A) $980 \mathrm{~cm}^{3}$
b) $1960 \mathrm{~cm}^{3}$
c) $140 \mathrm{~cm}^{3}$
d) $490 \mathrm{~cm}^{3}$

Answer:
\Rightarrow Circumprence of circle $=2 \Pi r=14 \Pi$
$=>r=7$
$=>\mathrm{h}=\frac{10}{\pi} \mathrm{~cm}$,
$=>$ volume of cylinder $=\Pi r^{2} h$
$=>\Pi X(7)^{2} \times 10 / \Pi=490 \mathrm{~cm}^{3}$
Ans $=490 \mathrm{~cm}^{3}$

