Number Series

1. How many terms are there in the series? 201, 208, 215,
(A) 23
(B) 24
(C) 25
(D) 26

Answer: (C) 25

$$
\begin{array}{ll}
n=\frac{(l-a)}{d}+1 & \text { where, } I=\text { last term }=369 \\
n=\frac{(369-201)}{7}+1 & a=\text { first term }=201 \\
=\frac{(168)}{2}+1 \Rightarrow 24+1=25 & d=\text { common difference } \\
\text { Ans }: 25 &
\end{array}
$$

2. $2^{2}+4^{2}+6^{2}+\cdots+20^{2}=-----$
(A) 1155
(B) 1540
(C) 2310
(D) 385×385

Answer: (B) 1540

$$
\begin{aligned}
& \epsilon n 2=\frac{n(n+1)(2 n+1)}{6} \\
& =2^{2}\left(1^{2}+2^{2}+3^{2}+4^{2}+\ldots \ldots 10^{2}\right)
\end{aligned}
$$

Where,

$$
\begin{aligned}
N & =10 \quad=2 \times 2\left(\frac{10(10+1)(20+1)}{6}\right)=2 \times 2\left(\frac{2310}{6}\right) \\
& =2^{2}(385)=>1540
\end{aligned}
$$

3. Find the sum of the first 40 terms of the series $1^{2}-2^{2}+3^{2}-4^{2}+\cdots$
(A) 820
(B) -820
(C) 870
(D) -870

Answer: (B) - 820
If both sign were presented in the equation

$$
\begin{aligned}
-\frac{n(n+1)}{2} & =-\frac{40(40+1)}{2}=-20(41) \\
& =-820
\end{aligned}
$$

4. Find the sum of the following series $2^{2}+3^{2}+\cdots+20^{2}$
(A) 2867
(B) 2868
(C) 2869
(D) 2870

Answer: (C) 2869

$$
\begin{aligned}
& \epsilon n 2=\frac{n(n+2)(2 n+1)}{6} \\
& \epsilon n 2=\frac{20(20+1)(2(20)+1)}{6} \\
& \epsilon n 2=\frac{20(21)(41)}{6} \\
& \epsilon n 2=2870
\end{aligned}
$$

But we should subtract 1^{2} from the $\epsilon n 2$ becose the question start from 2^{2}

$$
2870-1=2869
$$

5. $\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\frac{1}{4.5 .6}$ is equal to
(A) $\frac{15}{31}$
(B) $\frac{7}{30}$
(C) $\frac{16}{21}$
(D) $\frac{21}{27}$

Answer: (B) $\frac{7}{30}$

$$
=\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+\frac{1}{120}
$$

Take LCM $\frac{20+5+2+1}{120}=28 / 120$

$$
=\frac{7}{30}
$$

6. Find the value of $(1-1 / 3)(1-1 / 4)(1-1 / 5)-------(1-1 / 100)$
(A) $1 / 100$
(B) $1 / 50$
(C) $2 / 3$
(D) $99 / 100$

Answer: (B) 1 / 50
6. $\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right) \ldots \ldots .\left(1-\frac{1}{100}\right)$

$$
=\left(\frac{2}{3}\right)\left(\frac{3}{4}\right)\left(\frac{4}{3}\right) \ldots \ldots .\left(\frac{99}{100}\right)
$$

All the terms will be cancelled expect the first term 2 and last term 100

$$
\begin{aligned}
\frac{2}{100} & =\frac{1}{50} \\
& =\frac{1}{50}
\end{aligned}
$$

7. In a geometric series, if the fourth term is $2 / 3$ and seventh term is $16 / 81$, then what is the first term of the series?
(A) $2 / 3$
(B) $4 / 9$
(C) $8 / 27$
(D) $9 / 4$

Answer: (D) 9 / 4
7. $4^{\text {th }}$ term $=\frac{2}{3}-----\rightarrow>1$

$$
7^{\text {th }} \text { term } \frac{16}{81}------\rightarrow 2
$$

To find $1^{\text {st }}$ term

$$
\begin{aligned}
& \mathrm{Ar}^{3}=2 / 3 \quad \mathrm{ar}^{6}=16 / 81 \\
& a=\frac{2}{3} \frac{1}{r 6}----->1 \\
& a=\frac{16}{81} \frac{1}{r 6}----->2 \\
& \frac{2}{3} \frac{1}{r 3}=\frac{16}{81} \cdot \frac{1}{r 6} \\
& =>r 3=\frac{8}{7}=\frac{2}{3} \\
& \mathrm{~A}(2 / 3)^{3 / 2}=(2 / 3) \\
& \mathrm{A}(2 / 3)^{2}=1 \\
& \frac{4 a}{9}=1 \\
& \Rightarrow \quad a=\frac{9}{4}
\end{aligned}
$$

8. The seventh term in the series $2,6,12,20,30, \ldots \ldots$
(A) 42
(B) 72
(C) 56
(D) 90

Answer: (C) 56

Difference of each number increase by 2
Is $2+4,6+6,12+8,20+10,30+12$

So the number is 42
9. The $20^{\text {th }}$ term of $2,1030,68, \ldots$. is
(A) 408
(B) 8020
(C) 820
(D) 420

Answer: (B) 8020

$$
\begin{aligned}
& 1^{3}+1=2,2^{3}+2=10,3^{3}+3=30 \\
& 4^{3}+4=68 \\
& 20^{3}+20=8000+20 \\
& =>8020
\end{aligned}
$$

10. Find the sum of first 20 multiples of 15
(A) 3150
(B) 3050
(C) 2750
(D) 2950

Answer: (A) 3150
$\epsilon n=15+30+45+\cdots \ldots \ldots 300$
$=15[1+2+3+4+5+\ldots+20]$
$\epsilon n=\frac{n(n+1)}{2}=15\left[\frac{20(20+1)}{2}\right]$
$=15$ (210)
$=3150$
11. Find the sum of the first 20 terms of the series $1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\cdots$.
(A) -420
(B) -210
(C) 2870
(D) 420

Answer: (B) - 210

Both signs were present ,

$$
\text { So } \begin{aligned}
& -\frac{n(n+1)}{2}=-\frac{20(20+1)}{2} \\
& =-210
\end{aligned}
$$

12. $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{7}+\frac{1}{14}+\frac{1}{28}$ is equal to
(A) 2.5
(B) 2.0
(C) 1.5
(D) 1.0

Answer: (B) 2.0.

Take LCM = 28
$=\frac{28+14+7+4+2+1}{28}=\frac{56}{28}$
$=2$
13. If $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=36100$ then $1+2+3+\ldots \ldots+\mathrm{n}$ is equal to
(A) 290
(B) 190
(C) 390
(D) 490

Answer: (B) 190
$1+2+3+\ldots \ldots \ldots+n=$?

$$
\begin{aligned}
\epsilon k 3= & \epsilon k 2 \\
& 36100=(1+2+3+\ldots \ldots)^{2} \\
& 1+2+3+\ldots \ldots \mathrm{n}=\sqrt{36100} \\
& \mathrm{~N}=190
\end{aligned}
$$

14. Find the sum of all-natural numbers between 300 and 500 which are divisible by 11 .
(A) 7337
(B) 7227
(C) 7447
(D) 7557

Answer: (B) 7227

$$
\begin{aligned}
& \mathrm{A}=\text { first number }=308 \\
& \mathrm{~L}=\text { last number }=495 \\
& \mathrm{D}=\text { difference between each number }=11 \\
& =>n=\frac{l-a}{d}=\left(\frac{495-308}{11}\right)+1
\end{aligned}
$$

$$
N=18
$$

$$
\begin{aligned}
& =>\epsilon n=\frac{n}{2}(a+l) \\
& ==\frac{18}{2}(308+495)=9(803) \\
& \epsilon n=7227
\end{aligned}
$$

15. The product of n consecutive positive integers is divisible by
(A) $(n+1)$!
(B) n !
(C) $(n-1)$!
(D) $(n+1)(n-1)$

Answer: (B) n !

If $\mathrm{n}=1,2,3,4$ then it will be divisible by n only
$16.5^{\text {th }}$ term in series $\frac{2}{5}, \frac{6}{25}, \frac{18}{125} \ldots .$.

$$
\begin{aligned}
& r=\frac{3}{5}(\text { difference }) \\
& a=\frac{2}{5}(\text { first number })
\end{aligned}
$$

$$
A r^{n-1}=\frac{2}{5} \times 3^{5-1} / 5=2 / 5 \times 3^{4} / 5
$$

$$
=\frac{81}{625} \times \frac{2}{5}=\frac{162}{3125}
$$

(OR)
Take $\frac{2}{5}$ then $\frac{2}{5}\left(1, \frac{3}{5}, \frac{9}{25}, \frac{27}{125}, \frac{81}{625}\right)$
Then take fifth term and multiply with $2 / 5$
$\frac{81}{625} \times \frac{2}{5}=\frac{162}{3125}$
17. The sum of all 3 -digit numbers which are divisible by 8 is
(A) 61376
(B) 63176
(C) 67136
(D) 66137

Answer: (A) 61376

$$
\begin{aligned}
\mathrm{A} & =\text { first number }=104 \\
\mathrm{~L} & =\text { last number }=992 \\
\mathrm{D} & =\text { difference }=8 \\
n & =\left(\frac{l-a}{d}\right)+1 \\
n & =\left(\frac{992-104}{8}\right)+1 \quad \mathrm{n}=112 \\
\epsilon n & =\frac{n}{2}(a+l) \\
& =56(1096)
\end{aligned}
$$

$$
\text { = } 61376
$$

18. The value of $\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+\cdots--+\frac{1}{\sqrt{9}+\sqrt{8}}$ is:
(A) $1+\sqrt{2}+\sqrt{3}+\sqrt{4}+----+\sqrt{9}$
(B) $\sqrt{3}+\sqrt{5}+\sqrt{7}$
(C) $10 \sqrt{5}$
(D) 2

Answer: (D) 2
18. $\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+\ldots .+\frac{1}{\sqrt{9}+\sqrt{8}}$

If we conjugate 1 term $=\frac{1}{\sqrt{2}+1} X \frac{\sqrt{2}-1}{\sqrt{2}-1}=\frac{\sqrt{2}-1}{\sqrt{2}-1}$

$$
=\sqrt{2}-1
$$

Then all other terms will be like this

$$
\sqrt{2}-1+\sqrt{3}-2+\sqrt{4}-\sqrt{3}+\cdots \ldots . . \sqrt{9}-\sqrt{8}
$$

All the other terms expect $\sqrt{9}$ and -1
Will be other cancelled then $\sqrt{9}-1=3-1=>2$
19. Find the sum of the first 20 terms of the geometric series $5 / 2+5 / 6+5 / 18+\ldots$
(A) $\frac{15}{4}\left[1-\left(\frac{1}{3}\right)^{20}\right]$
(B) $\frac{15}{4}\left[1-\left(\frac{1}{3}\right)^{18}\right]$
(C) $\frac{15}{4}\left[1-\left(\frac{1}{3}\right)^{16}\right]$
(D) $\frac{15}{4}\left[1-\left(\frac{1}{3}\right)^{14}\right]$

Answer: (A) $\frac{15}{4}\left[1-\left(\frac{1}{3}\right)^{20}\right]$
19. Sum of first 20 terms of geometric series $\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\cdots \ldots$.
$A=$ first term $=5 / 2 \quad n=$ total no.of terms
$R=$ difference $=1 / 3$
$\sum_{k=0}^{n}\left(\left(a^{k}\right)\right)=1\left(\frac{1-\mathrm{rn}}{1-\mathrm{r}}\right)$
$=\frac{5}{2}\left(\frac{1-\left(\frac{1}{3}\right) n}{1-\frac{1}{3}}\right)^{20}$
$=\frac{5}{2}\left(\frac{1-\left(\frac{1}{3}\right)}{\frac{3-1}{3}}\right)^{20}$
$=\frac{5}{2}\left(\frac{1-\left(\frac{1}{3}\right)}{\frac{2}{3}}\right) 20$
$=>\frac{15}{4}\left[1-\left(\frac{1}{20}\right)^{20}\right.$

