Probability Solved Sums

The mean is the usual Average , so add and then divide.
The median is the middle value, so first rewrite the given number in ascending order.
The mode is the number that is repeated more often than any other.
Range is largest - Smallest number.

1. The Marks obtained by 10 students in an examination were as follows: 70, $65,68,70$,
$\mathbf{7 5 , 7 3}, 80,70,83,86$. Then the mean deviation about mode is
(A) 7.71
(B) 5.4
(C) 54
(D) 5.6

Answer: (B) 5.4

The marks obtained by 10 students in an examination were as follows $70,65,68,70,75$,
$73,80,70,83,86$. Find mean deviation about mode is ?
Mode $=70$
M.D about mode $=\frac{\epsilon|x-z|}{N} \quad($ for type 1$)$

X	$\|x-z\|$	$\|x-z\|=0+5+2+0+5+3+10$
70	$70-70=0$	$0+13+16=54$
65	$65-70=5$	
68	$68-70=2$	SO M.D about mode $=\frac{\epsilon\|x-z\|}{N}$
70	$70-70=0$	
75	$75-70=5$	$(N=$ total numbers)
73	$73-70=3$	
80	$80-70=10$	$=54 / 10$
70	$70-70=0$	$=5.4$

83

$$
\begin{aligned}
& 83-70=13 \\
& 86-70=16
\end{aligned}
$$

2. The Mode of $\mathbf{6}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{3}, \mathbf{2}, \mathbf{2 , 5}, \mathbf{4}, \mathbf{3}, \mathbf{6}, 5,4,7,4,9,9$ is
(A) 6
(B) 4
(C) 5
(D) 9

Answer: (B) 4
The mode of $6,4,5,6,3,2,2,5,4,3,6,5,4,7,4,9,9$ is ?
After rewriting we get
2,2,3,3,4,4,4,4,5,5,5,6,6,6,7,9,9
So 4 is mode.
3. The Arithmetic mean of all the factors of 21 is
(A) $11 / 3$
(B) $31 / 3$
(C) 5
(D) 8

Answer: (D) 8

The arithmetic mean of all factor of 21 is
Factor of 21 are $=1,3,7,21$
So mean $=\frac{1+3+7+21}{4}=\frac{32}{4}=8$
4) Total number of all possible squares in a chess Board is ?
Chess board has 8 squares box, so maximum number we get is 8 and least is ,
So $8^{2}+7^{2}+6^{2}+5^{2}+4^{2}+3^{2}+2^{2}+1^{2}$

$$
=>204
$$

5) Find the average of $1^{\text {st }} 9$ prime number is
First 9 prime numbers are $2,3,5,7,11,13,17,19,23$.

$$
\begin{aligned}
\text { Average } & =\frac{2+3+5+7+11+13+17+19+23}{9} \\
& =100 / 9 \\
& =111 / 9
\end{aligned}
$$

6) Mean of 35 observation is 78.4 , but it is found 96 is misread as 69 . The correct mean is ?

$$
\begin{aligned}
\frac{x}{25}=78.4, \text { so } x & =25 \times 8.4 \\
& =1960
\end{aligned}
$$

$$
X=1960
$$

Now $\frac{x-\text { wrong }+ \text { new }}{25}$
$=>\frac{1960-69+96}{25}=79.48$
7) if $\frac{1}{8}$ of a pencil is black $\frac{1}{2}$ of remaining is white and the remaining $3 \frac{1}{2} \mathrm{~cm}$ is blue find length of the pencil.

Black	white	Blue

Blue is $3 \frac{1}{2}=3.5$
black is $\frac{1}{8} x$, that is remaining is $\frac{7 x}{8}$
white is half so as blue is 3.5

$\frac{x}{8}+7=x$,
$7=\frac{7 x}{8}=8$
$X=8$
8) If the mean of 4 observation is 20 and when a constant ' C ' is added to each observation ,the mean becomes 22 . The value of \mathbf{C} ?
$\frac{x}{4}=2 m$

$$
\frac{x}{4}=22
$$

$X=80 \quad x=88$
Extra $=8$ for 4 numbers
For each number 8/4 $=2$
9) If each entry in a data is divided by 10 Find the change in their arithmetic mean ?
Arithmetic mean $=\frac{10+10}{2}=10 \quad$ (here 2 is to be replaced by 10 to get new mean)
Each it is divided by $10=\frac{10}{10}+\frac{10}{10}=2$
So it is divided by 10 .
10) Time taken by 5 members of team $5 \times 1000 \mathrm{~m}$ are 2.55,2.15,2.30,2.60 and 2.40. Find team average in $\mathrm{km} / \mathrm{hr}$.

Total distance $=5500 \mathrm{~m}$
Total time $=12 \mathrm{~min}=>720 \mathrm{sec}$
Speed $=\frac{\text { distance }}{\text { Time }}=\frac{5000}{720}$

$$
\begin{aligned}
& \Rightarrow \frac{2500}{72}(\text { for converting } \mathrm{m} / \mathrm{sec}) \\
& =\frac{500}{72} \times \frac{18}{5}=>25 \mathrm{Km} / \mathrm{hr} .
\end{aligned}
$$

11) Find the co-efficient of $n=10, x=12$ and $\in x^{2}=1530$

$$
\begin{aligned}
\mathrm{T} & =\sqrt{\left(\frac{\in x 2}{n}\right)-(\in x / \mathrm{n}) 2} \\
& =\sqrt{\frac{1530}{10}}=(12 \times 12) \\
& =\sqrt{155-144} \\
& =\sqrt{9} \\
& =3 \\
\text { Co - efficient of variation (c.v) } & =\left(\frac{\sigma}{x}\right) \times 100 \\
& =\frac{3}{12} \times 100 \\
& =25
\end{aligned}
$$

12) Obtain mean of the following data :

$$
\begin{array}{l:lllll}
x & 5 & 10 & 15 & 20 & 25
\end{array}
$$

F : $3101025 \quad 7 \quad 5$

X	F	F_{2}
5	3	15
10	10	100
15	25	375
20	7	740
25	5	125
	50	755

$$
\begin{aligned}
\text { Mean } & =\frac{755}{50} \\
& =15.1
\end{aligned}
$$

13) Average mark of $\mathbf{1 0}$ children is $\mathbf{8 0}$ then their total mark is

$$
\begin{aligned}
\Rightarrow \quad x / 10 & =80 \\
x & =800
\end{aligned}
$$

14) For distribution mean $=65$, median $=\mathbf{7 0}$, then mode and co- efficient of variation is ?

$$
\Rightarrow \text { Co efficient of variation }=\frac{S D}{m e a n} X 100
$$

Mode $=3$ median -2 mean.

$$
\begin{aligned}
& =3 \times 70-2 \times 65 \\
& =210-130 \\
& =80
\end{aligned}
$$

Set 2

1. The number of values less than the median of $\mathbf{9 7}$ values is

Median = middle number
1,2,3,4, 97
$\frac{\text { last } n o-\text { First } n o}{2}=\frac{97-1}{2}=48$
Ans: $=>48$.
2. A set of values in ascending order are $20,22, \mathbf{x}, \mathbf{2 8}, \mathbf{3 0}, \mathbf{3 2}$. If median of these values is 26 then the value of x is

20, $22 \mathrm{X}, 28,30,32$
Median is 26
There will be two middle numbers
(ie) X \& 28
To find X :
Median $=X_{1}+X_{2} / 2$
Median $=\mathrm{X}_{1}+\mathrm{X}_{2} / 2$
$\frac{X+28}{2}=26$
$\Rightarrow \quad x+28=52$
$X=52-28$
Ans: $X=24$
3. Thirteen eggs collected in a farm have the following weights in grams: $\mathbf{3 2}, \mathbf{4 0}, \mathbf{2 8}, \mathbf{3 3}, \mathbf{3 9}$, $46,41,33,40,41,31,32,33$. The mode of the above data is

Mode $=$ Most repeated value
The value 33 is the repeated value and
It is repeated for 3 times
Ans: 33
4. If the mean of $x, x+2, x+4, x+6, x+8$ is 20 then x is

Mean of $x, X+2, x+4, x+6, x+8$ is 20 .
Total number of terms $=5$
If mean is 20 for 5 items
Then $5 \times 20=100$
The values other than X (ie) $2+4+6+8$
Will give 20

So subtract it from 100
$(100-20)=80$
There are 5 terms so $=80 / 60=16$
Ans $=>16$
5. The Mean of 15 numbers is 213 . If each number is divided by 3 , the new mean will be For new numbers $=213$

If divided by $3=213 / 3$

$$
\text { Ans }=>71
$$

6. The Arithmetic mean of $\mathbf{1 0}$ numbers is $\mathbf{- 7}$. If $\mathbf{5}$ is added to every number then the new arithmetic mean is

Arithmetic mean of 10 number is $-7,5$ is added to every number

$$
\begin{aligned}
& -7+5=-2 \\
& \text { Ans }=>-2
\end{aligned}
$$

7. The Product of mean and mode for the data $1,2,2,3,3,3,4,4,4,4$ equals

Mean $=\frac{1+2+2+3+3+3+4+4+4+4}{10}$
Mean $=30 / 10=3$
Mean = 3
Mode $=$ Most repeated terms,
Mode $=4$
Product of mean and mode $=3 \times 4$
Ans : 12
8. The mean mark of 100 students was found to be $\mathbf{6 0}$. Later on, it was found that a score of 91 was misread as 41 . Then the correct mean corresponding to the correct score is

Mark of 100 students mean $=60$
$-------\rightarrow$ so total marks fo 100 students $=6000$
$------\rightarrow$ one score was mired as 41 for 91 .The difference is 50

$$
\begin{array}{ll}
6000+\frac{50}{100}=\frac{6050}{100} & \text { Alternative } \\
=605 & 60+\frac{50}{100} \\
& =60+0.5 \\
& =60.5
\end{array}
$$

Ans: 60.5
9. The mean of 5 observations is 25 , if one of the observation is excluded the mean becomes 20. The excluded number is

Mean of 5 observation is 25

$$
5 \times 2=125
$$

One observation is executive the mean is 20
For 4 observation mean is 20
$4 \times 20=80$
Subtract mean of 4 from mean of 5
$125=80$
$=45$
Ans : 45
10. The Mean of the first n natural numbers
mean of first n natural number
$\frac{n(n+1)}{2}$
11. If the arithmetic Mean of $7,5,13, x$ and a be 10 , then the value of x is
$\frac{7+5+13+x+9}{5}=10$
$34+\mathrm{x}=50$
$X=50-34$
Ans : 16
12. The mean of first five prime numbers is

The mean of first five prime number ?
First 5 prime number $=1,3,5,7,11$
$=\frac{2+3+5+7+11}{5}=\frac{28}{5}=5.6$
Ans : 5.6
13. The Mean weight of 40 students using the data given below is

Weights (in Kgs): 48505354
No of students : $\begin{array}{lllll}5 & 20 & 10 & 5\end{array}$

Mean weight of 40 students
5 students weight $48 \mathrm{~kg}=5 \mathrm{X} 48=240 \mathrm{Kg}$
20 students weight $50 \mathrm{~kg}=20 \times 50=1000 \mathrm{Kg}$
10 students weight $53 \mathrm{~kg}=530 \mathrm{~kg}$
5 students weight $54 \mathrm{~kg}=5 \times 54=270 \mathrm{~kg}$
Mean $=\frac{240+1000+530+270}{40}$
= $2040 / 40$
Ans: 51
14. The arithmetic mean of a group of 100 observations was calculated as 63 . It was later found that one observation was wrongly taken as 75 instead of 65 . The correct mean is

Arithmetic mean of 100 observation $=63$
For one observation readind was
Taken wrong instead of 65,75
Was taken
The difference $=75-65=100$
$10 / 100=10$
Subtract it from 63
Ans : 62.90
15. If l is the standard deviation of the elements α, β, Υ. Then the standard deviation of the elements $\alpha+3, \beta+3, \Upsilon+3$ is
$=>$ IF a constant term is added to all the number in the data , the standard derivation does'nt change S.D change only when different number are added. so S.D $\alpha+3, \beta+3, \mu+3$ is 'I'
16. The Mean of 5 numbers is 25 . If one number is excluded and the mean is still 25 , the excluded number is

One number is excluded and mean is still 25
For 5 number mean $=5 \times 25=125$
For 4 number mean $=4 \times 25=100$
The difference is $125-100=25$
Ans: 25
17. The ages of children in a scout cam are $14,14,15,16,14,16,15,16,14,14$ years. The relationship between mean, median and mode is
(A) Mean $=$ Median $=$ Mode
(B) Mean < Median < Mode
(C) Mean > Median > Mode
(D) Median < Mode < Mean

Answer: (C) Mean > Median > Mode

- Mean $=\frac{14+14+15+16+14+16+15+16+14+14}{10}$

$$
=\frac{148}{10}=14.8
$$

Mean $=14.8$

- Median :

First of all we should arrange in ascending order
$14+14+14+14+14+15+15+16+16$
Median $=x_{1}+x_{2} / 2=14+\frac{15}{2}=\frac{29}{2}=14.5$
Median $=14.5$

- Mode $=$ most no. of repeated term
- $14,14,14,14,14,15,15,16,16,16$,

```
Mode = 14 ( }5\mathrm{ times repeated )
Mean (14.8) > median ( 14.5 ) > mode (14)
```

18. What is the standard deviation of the first \mathbf{n} natural numbers?
(A) $\sqrt{\frac{n^{2}-1}{12}}$
(B) $\sqrt{\frac{n^{2}+1}{12}}$
(C) $\sqrt{\frac{n(n+1)}{12}}$
(D) $\sqrt{\frac{n(n+1)(2 n+1)}{12}}$

Answer: (A) $\sqrt{\frac{n^{2}-1}{12}}$
19. The standard deviation of $50,47,53,48,51,52,49$ is
(A) 4
(B) 2
(C) $14 / 3$
(D) $\sqrt{\frac{14}{3}}$

$$
\begin{aligned}
& \text { Mean }=\frac{50+47+53+48+51+52+49}{7}=\frac{350}{7} \\
& \text { Mean }=50
\end{aligned}
$$

Difference of mean and each value given and then square the difference and then take the mean $0^{2}+3^{2}+3^{2}+2^{2}+1^{2}+2^{2}+1^{2} / 6$

$$
=\frac{9+9+4+1+4+1}{6}=\frac{28}{6}=\frac{14}{3}
$$

Ans : 14/3
20. Find the range of the following data: 25, 67, 78, 43, 21, 17, 49, 54, 76, 92, 20, 45, 86, 37, 35.
(A) 78
(B) 75
(C) 92
(D) 86

Answer: (B) 75

Range $=$ largest value - smallest value
$=92-17$
Ans: 75
21. The heights (in meters) of 10 trees in a grove are $15,2,8,11,3,9,9,6,10,6,12$. The range for this data is
(A) 10
(B) 15
(C) 6
(D) 13

Answer: (D) 13
Range $=$ largest value - smallest value

$$
=15-2
$$

Range $=13$
22. The range of the first $\mathbf{3 0}$ Natural numbers is
(A) 28
(B) 29
(C) 30
(D) 31

Answer: (B) 29

Range of first 30 natural numbers the first 30 natural numbers are $1,2,3,4,5, \ldots 29,30$
Range $=$ largest value - smallest value

$$
=30-1=29
$$

Range $=29$
23. Find the range of first 10 prime numbers
(A) 28
(B) 26
(C) 29
(D) 27

Answer: (D) 27
Prime number $=2,3,5,7,11,13,17,19,23,29$
Range $=$ largest value - smallest value

$$
=29-2=27
$$

Ans : 27
24. Probability of sure and impossible events
(A) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(B) $(0,1)$
(C) $(1,0)$
(D) $(1,1)$

Answer: (C) (1,0)
Probability for impossible even is
Always 0
A sure event probability is 1
$=(1,0)$
25. For a set of \mathbf{n} values, $\sum x-x$ is èqual to
(A) $n x$
(B) $(n-2) x$
(C) $(n-1) x$
(D) 0

Answer: $(n-1) x$
$=(n x-x)$
$=x(n-1)$
26. For any n observations of data, what is the value of $\left(\sum x\right)-n x$?
(A) $n\left(\sum \mathrm{x}\right)$
(B) $(n-2) x$
(C) $(n-1) x$
(D) 0

Answer: (D) 0
By identify $€ x-\bar{x}=0$ so for
Observation of data is also 0
27. Find the average of first ten positive multiples of three?
(A) 17.5
(B) 17
(C) 16.5
(D) 16

Answer: (C) 16.5

Average of first 10 multiple of 3 ?
$=\frac{3+6+9+12+15+18+21+24+27+30}{10}$
$=\frac{165}{10}=16.5$
Ans: 16.5
28. The average marks of 6 boys in a group is 47 . The marks of 5 of them are $52,47,52,44$ and 41. The marks of the sixth boy is
(A) 41
(B) 44
(C) 47
(D) 46

Answer: (D) 46
Marks of 5 boys $=52,47,52,44,41$
Find $6{ }^{\text {th }}$ boy mark ?
Average marks of 6 boys $=6 \times 47=282$----->1
Marks of 5 boys $=52+47+52+44+41=236---->2$
Subtract equation $1 \& 2$
$282-236=46$
$6^{\text {th }}$ boy mark $=46$
29. The average of 4 values is 20 and when a quantity is added to each value the average is
22. Find the quantity.
(A) 1
(B) 2
(C) 3
(D) 4

Answer: (B) 2

Average of 4 values $=20$
When a quantity added, average becomes 22
Average of 4 values $=4 \times 20=80$
Again a quantity is added to each of the 4 values
So $=4 \times 22=88$
So to each value a quantity of 2 is added
30. Average of a and b is 45 and the average of b and c is 35 then $a-c=$?
(A) 20
(B) 30
(C) 25
(D) 15

Answer: (A) 20

Average of $B \& C=35$
To find A - C
Average of $A \& B=45=45 \times 2=90$
Average of $B \& C=35=35 \times 2=70$

$$
\begin{gathered}
A+B+0=90 \\
0+B+C=70 \\
\hline
\end{gathered}
$$

$$
A-C=20
$$

Ans: $\mathrm{A}-\mathrm{C}=20$
31. Temperatures are recorded every 1 hour for eleven hours from 6.00 am onwards in a town. The averages of the first six readings is $\mathbf{3 0}$ degree Celsius, the last six readings is 20 degree Celsius and the overall average is 26 degree Celsius. The $6^{\text {th }}$ reading is
(A) 25 degree
(B) 15 degree
(C) 14 degree
(D) 26 degree

Answer: (C) 14 degree.

Temperature recorded for 1 hour for 11 hour
For $1^{\text {st }}$ six reading $=30 \times 6=180$
For last six reading $=20 \times 6=120$
Totally $1^{\text {st }}+$ last reading $=300------>1$
Overall average $=26$
For 11 hours $=26 \times 11=26$-------- > 2
Subtract equation 1 \& 2
$300-286=14$
The sixth reading is 14 which is sixth because of 12 readings in which sixth reading is added to both the first and lost reading.
32. There are 3 persons namely, $A B$ and C in family. The average age of A and B is 20 , the average age of B and C is 19 , and the average age of C and A is 21 . The ages of A, B and C are
(A) $22,18,20$
(B) $24,20,16$
(C) 18, 20, 24
(D) $16,20,24$

Answer: (A) 22, 18, 20

Average age of A \& C $=20$
Average age of $B \& C=19$
Average age of $C \& A=21$
$\frac{A+B}{2}=20$

$$
A+B=40
$$

$\frac{b+c}{2}=19$
$b+c=38$
$\frac{c+a}{2}=21$

$$
c+a=42
$$

$A+b+b+c+a=40+38+42$
$2 \mathrm{a}+2 \mathrm{~b}+2 \mathrm{c}=120$
$2(a+b+c)=120$
$A+b+c=60$
If $a+b=40$
$C=20$
If $\mathrm{c}=20, \mathrm{~B}=18, \mathrm{AND} \mathrm{a}=22$
Ans: $A=22, B=18, C=20$
33. The average of 11 numbers is 10.8 . If the average of the first six numbers is $\mathbf{1 0 . 4}$ and that of the last six numbers is 11.5 , then the middle (6th) number is
(A) 10.3
(B) 12.6
(C) 13.5
(D) 15.5

Answer: (B) 12.6
$=>$ Total $x / 11=10.5=>118.8$
First $6-->x / 6=10.4$

$$
X=62.4
$$

Last 6 ----- > x / $6=11.5$

$$
X=69
$$

First $6+$ last $6=69+62.4$

$$
=131.4
$$

$($ first $6+$ last 6$)-($ Average of 4$)=131.4-118.8$

$$
=12.6
$$

34. The average salary of all workers in the factory Rs. 60. The average salary of $\mathbf{1 2}$ officers is Rs. 400. The average salary of rest is Rs. 56. Find the total no of workers in the factory.

Total no $=x$
Officers $=12$
Rest $=x-12$
So, $\quad 60 x=12 \times 400+(x-12) 56$
$60 x=4800+56 x-672$
$X=1032$
35. The average weight of 10 persons is increased by 1.5 Kg when one of them with weight 50 Kg is replaced by a new man. The weight of the new man (in Kgs) is
(A) 60
(B) 50
(C) 55
(D) 65

Answer: (D) 65.

Avg.weight of 10 persons increased by 1.5 kg
Weight replaced 50 kg
For 10 person - 15 kg should be increased
So $50+15=65$
New person weight $=65 \mathrm{~kg}$
36. The average of five numbers is 20 . If we eliminate one number from it, the average will be reduced by 5 . What is the number eliminated?
(A) 5
(B) 40
(C) 20
(D) 15

Answer: (B) 40

For 5 number $=20$
$5 \times 20=100$

For 4 numbers average dereased

$$
\text { By } 5=20-5=>15
$$

$$
4 \times 15=60
$$

So number eliminated $=100-60$
Ans: 40

