Tnpsc Group 4 Aptitude \& Mental Ability Solved Questions

Tnpsc CCSE 42018 Expected Cut Off Marks: https://goo.gl/bsYwHt

Tnpsc CCSE 42018 Answer Key: https://goo.gl/kUg5Xo

1. The value of e^{0} is
(A) e
(B) 1
(C) 0
(D) ∞

Ans: (B) 1
Solution :
Anything to the power $\mathbf{0}$ is $\mathbf{1}$.
2. How many solutions have a linear equation in one variable?
(A)Three Solutions
(B)Unique solution
(C)Two Solutions
(D)No Solutions

Ans: (B) Unique Solution

Solution :
Let us take an example of linear equation with one variable

$$
\begin{gathered}
2 x-4=0 \\
2 x=4 \\
X=2
\end{gathered}
$$

So for equation with one variable only one solution can be formed.
3. The $7^{\text {th }}$ term of the sequence $0.12,0.012,0.0012, \ldots \ldots$. is
(A) $1.2 * 10^{6}$
(B) $1.2 * 10^{-6}$
(C) $1.2 * 10^{7}$
(D) $1.2 * 10^{-7}$

Ans : (D) $1.2 * \mathbf{1 0}^{-7}$

Solution :

1. 0.12
2. 0.012
3. 0.0012
4. 0.00012
5. 0.000012
6. 0.0000012

7. 0.00000012

$$
0.00000012=12 * 10^{-6}=\mathbf{1 . 2} * \mathbf{1 0}^{-\mathbf{7}}
$$

4. Simplify $: \frac{9}{8} \div \frac{3}{5}$ of $\left(\frac{3}{4}+\frac{3}{5}\right)$
(A) $1 \frac{11}{18}$
(B) $1 \frac{5}{18}$
(C) $1 \frac{13}{18}$
(D) $1 \frac{7}{18}$

Ans: (D) $1 \frac{7}{18}$

Solution :

$$
\begin{aligned}
& \frac{9}{8} * \frac{5}{3} \text { of }\left(\frac{27}{20}\right) \\
& \frac{45}{24} \div \frac{27}{20} \\
& \frac{45}{24} * \frac{20}{27}=\frac{25}{18}=1 \frac{7}{18}
\end{aligned}
$$

5. A sum of money triples itself $\mathbf{t} 8 \%$ per annum over a certain period of time.

The time taken is
(A) 20 years
(B) 22 years
(C) 25 years
(D) 30 years

Ans: (C) 25 years

Solution:

Let us take $\mathrm{p}=$ Rs. 100 when it triples total amount will be Rs. 300 . So the interest will be Rs. 200.

$$
\begin{aligned}
& \mathbf{S I}=\frac{P N R}{\mathbf{1 0 0}} \\
& 200=\frac{100 * N * 8}{100} \\
& \mathrm{~N}=\frac{200}{8} \\
& \mathbf{N}=\mathbf{2 5} \text { years. }
\end{aligned}
$$

6. Find the correct relationship between G.C.D. and L.C.M.
I. G.C.D. $=$ L.C.M.
II. G.C.D. \leq L.C.M.
III. L.C.M. \leq G.C.D.
IV. L.C.M. > G.C.D.
(A) I
(B) II
(C) III
(D) IV

Ans: (D) IV

Solution :

L.C.M and G.C.D must have atleast minimum of two values.

Let us take values 2 and 4
L.C.M $=4$
G.C.D $=2$
L.C.M. > G.C.D.
7. If p, q, r, s, t are in A.P then the value of $p-4 q+6 r-4 s+t$ is
(A) 1
(B) 2
(C) 3
(D) 0

Ans: (D) 0
Solution : In A.P the difference between each value will be same.
Let us take difference between each value as 1 .
So $\mathrm{p}=1, \mathrm{q}=2, \mathrm{r}=3, \mathrm{~s}=4, \mathrm{t}=5$ sub these values in the eqn
$1-4(2)+6(3)-4(4)+5$
$1-8+18-16+5=\mathbf{0}$
8. The G.C.D and L.C.M of $\mathbf{9 0}, \mathbf{1 5 0}, \mathbf{2 2 5}$ is
(A) 15,450
(B) 450,15
(C) 90,225
(D) 225,150

Ans : (A) $\mathbf{1 5 , 4 5 0}$
Solution :
G.C.D of
$90=15 * 3 * 2$
$150=15 * 5 * 2$
$225=15 * 15$
G.C.D $=15$
L.C. $M=15 * 3 * 5 * 2=450$
L.C. $M=450$
9. If $y-\frac{1}{y}=6$ find the value of $y^{3}-\frac{1}{y^{3}}$
(A) 216
(B) 222
(C) 234
(D) 228

Ans: (C) 234

Solution :

$$
6^{3}+6(3)=216+18=\mathbf{2 3 4}
$$

10. Which of the following statement is false in a parallelogram?
(A) The opposite sides are parallel
(B) The opposite angles and sides are equal
(C) The diagonals are equal
(D) The diagonals bisect each other

Ans : (C) The diagonals are equal

Solution :

In parallelogram one diagonal will be larger and one diagonal will be smaller.
11. Reciprocal of $\mathbf{0}$ is
(A) 0
(B) 1
(C) ∞
(D) No reciprocal

Ans : (D) No reciprocal
Solution : There is no reciprocal for 0 .

12. Which of the following statements is false ?

(A) Among the common divisors of given numbers, the greatest divisor is the G.C.D.
(B) If the G.C.D of an two numbers is 1 they are said to be prime numbers.
(C) Among the common multiples of given numbers the least is the L.C.M.
(D) The product of an two numbers is equal to the product of their G.C.D. and L.C.M.

Ans: (B) If the G.C.D of an two numbers is 1 they are said to be prime numbers.

winmeen

13. If the product of 4 four consecutive number is $\mathbf{6 2 5}$. Find the first term.
(A) 15
(B) 25
(C) 5
(D) 35

Ans: (C) 5

Solution :

$$
\begin{aligned}
& \mathbf{5}, \mathbf{2 5}, \mathbf{1 2 5}, \mathbf{6 2 5} \\
& 5 * 5=25 \\
& 25 * 5=125 \\
& 125 * 5=625
\end{aligned}
$$

14. Gain or loss percent is always calculated on
(A) Cost price
(B) Selling price
(C) Gain
(D) Loss

Ans: (A) Cost price
Solution :
Gain or loss percent is always calculated on cost price only.
15. A student goes to his school from his house at a speed $3 \mathrm{~km} / \mathrm{hr}$ and returns at a speed of $\mathbf{2 k m} / \mathrm{hr}$. If he takes $\mathbf{5}$ hours in going and coming the distance between his house and school is
(A) 5 km
(B) 5.5 km
(C) 6 km
(D) 6.5 km

Ans : (C) 6 km
Solution :
House to School - 3km/hr School to house - $2 \mathrm{~km} / \mathrm{hr}$
For $1 \mathrm{hr}=3 \mathrm{~km}$
For $1 \mathrm{hr}=2 \mathrm{~km}$
L.C.M of 3 and 2 will be 6

For $1 \mathrm{hr}=3 \mathrm{~km}$
For $1 \mathrm{hr}=2 \mathrm{~km}$
For $6 \mathrm{~km}=2 \mathrm{hrs}$
For $6 \mathrm{~km}=3 \mathrm{hrs}$
Totally 5 hrs
16. If $x, 2 x+2,3 x+3$ are in G.P then $11 x, 22 x+22,33 x+33$ form
(A) an A.P.
(B) a G.P.
(C) a constant sequence
(D) Neither A.P. nor a G.P.

Ans: (B) a G.P.

Solution :

$11(\mathrm{x}), 11(2 \mathrm{x}+2), 11(3 \mathrm{x}+3)$
They are In multiples only so it is G.P.
17. The sum of three numbers is 264 if the first number be twice the second and third be one third of the first , then the second number is
(A) 48
(B) 72
(C) 54
(D) 64

Ans: (B) 72
Solution :
The first number be twice the second and third be one third of the first. So the ratio is $6: 3: 2$
totally 11 parts $264 \div 11=24$
1 part = 24
3 parts $=3 * 24=72$.
18. If $1^{2}+2^{2}+3^{2}+\ldots \ldots . .10^{2}=385$ then $2^{2}+4^{2}+6^{2}+\ldots \ldots+20^{2}$ is
(A) 770
(B) 1150
(C) 1540
(D) 385×385

Ans: (C) $\mathbf{1 5 4 0}$

Solution :

$$
\begin{aligned}
& 1^{2}+2^{2}+3^{2}+\ldots \ldots \cdot 10^{2}=385 \\
& 2^{2}+4^{2}+6^{2}+\ldots \ldots .+20^{2}=2^{2}\left(1^{2}+2^{2}+3^{2}+\ldots \ldots .10^{2}\right) \\
& \mathbf{4}(\mathbf{3 8 5})=\mathbf{1 5 4 0}
\end{aligned}
$$

19. If the ratio $x \%$ of y to $y \%$ of x, its fraction value is equals to
(A) $\frac{1}{x y}$
(B) $x y$
(C) $\frac{x}{y}$
(D) 1

Ans: (D) 1

Solution

$$
\frac{x * y}{100}: \frac{y * x}{100}=1
$$

winmeen

20. Arun is half old as his father. Twelve years ago the father's age was three times as old as Arun. Now the present age of his father's age is
(A) 24 years
(B) 36 years
(C) 48 years
(D) 50 years

Ans: (C) 48 years

Solution :

Twelve years ago the father's age was three times as old as Arun so the ratio is
12:36
Now the present age is $12+12: 36+12$
21. If $\mathbf{a}, \mathrm{b}, \mathrm{c}$ are in A.P. Then $3^{\mathrm{a}}, 3^{\mathrm{b}}, 3^{\mathrm{c}}$ are in
(A) A.P.
(B) G.P.
(C) A.P. and G.P.
(D) None of these

Ans : (B) G.P.

Solution :

$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. then $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=3$
$3^{1}, 3^{2}, 3^{3}=3,9,27$
So it is a G.P. series.
22. If $\mathbf{- 1}<\mathbf{r}<\mathbf{1}$ then the sum of infinite number of geometric series is
(A) $\frac{a\left(r^{n}-1\right)}{r-1}$
(B) $\frac{a\left(1-r^{n}\right)}{1-r}$

(C) $\frac{a}{1-r}$
(D) None of these

Ans: (C) $\frac{a}{1-r}$
23. The angle in a semicircle is a
(A) Acute angle
(B) Obtuse angle
(C) Straight angle
(D) Right angle

Ans: (D) Right angle

24. If $\frac{a}{3}=\frac{b}{4}=\frac{c}{7}$ then $\frac{a+b+c}{c}$ is
(A) 7
(B) 2
(C) $\frac{1}{2}$
(D) $\frac{1}{7}$

Ans: (B) 2

Solution :

$$
\begin{aligned}
& a=3, b=4, c=7 \\
& \frac{3+4+7}{7}=\frac{14}{7}=\mathbf{2}
\end{aligned}
$$

25. Which is biggest ratio?

2:3, 3:5, 4:7, 5:8
(A) $3: 5$
(B) $4: 7$
(C) $5: 8$
(D) $2: 3$

Ans : (D) 2:3
Solution :
$\frac{2}{3}=\mathbf{0 . 6 6} ; \quad \frac{3}{5}=0.6 ; \quad \frac{4}{7}=0.57 ; \quad \frac{5}{8}=0.625$

