<u>LESSON – 1</u> **ATOMIC STRUCTURE-II BOOK BACK ONE MARKS**

01.	En = $-\frac{313.6}{n^2}$, if the	value of $En = -34.84$	to which value 'n' c	orresponds
	a) 4	b) 3	c)2	d) 1
02.	Dual character of a	n electron was explai	ined by	
	a) Bohr	b) Heisenberg	c)de – Broglie	d) Pauli
03.	De –Broglie equati	on is		$\mathbf{\wedge}$
	a) $\lambda = mv / h$	b) $\lambda = hmv$	c) $\lambda = hv / m$	d) $\lambda = h / mv$
04.	The value of the B	ohr radius for hydrog	en atom is	
	a) 0.529 x 10 ⁻⁸ cm		b) 0.529 x 10 ⁻¹⁰ cm	
	c) 0.529 x 10 ⁻⁹ cm		d) 0.529 x 10^{-12} cm	
05.	Which of the follow	wing particles having	same kinetic energy	, would have the maximum
	de-Brogile wave le	ength		
	a) α – particle	b) proton	c) β – particle	d) neutron
06.	If the energy of ele	ctron in the second B	ohr orbit of H-atom	is –E,
	What is the energy	of electron in the Bo	hr's first orbit?	
07.	a) 2E The energy of an e	b) – 4E lectron in an atom is	c) $-2E$ given by En =	
	a) $-4\pi^2 \text{me}^4 / n^2 h^2$		b) $-2\pi^2 me^2 / n^2 h^2$	
	c) $-2\pi^2 me^4 / n^2 h^2$		d) $-2\pi me^4 / n^2 h^2$	
08.	The bond order of	oxygen molecule is		
	a) 2.5	b) 1	c)3	d) 2
09.	The hybridisation i	n SF ₆ molecule is	_	
	a) sp ³	b) sp^3d^2	c)sp ³ d	d) sp^3d^3
10.	The intramolecular	hydrogen bonding is	s present in	
	a) o-nitrophenol		c) p-nitrophenol	
	b) m-nitrophenol		d) none	
		PUBLIC ON	<u>E MARKS</u>	
11.	The type of hybrid	isation in NH₄ ⁺ ion is		
_ ,	a) sp	b) sp^2	c) sp^3	d) sp ³ d
12.	Molecular orbital v	vith less energy is	· •	· •
	a) σls	b) σ*1s	c) π2py	d) π*2py
13.	Among N ₂ , Li ₂ and	H_2 the relatively mo	ore stable molecule in	terms of bond order is

	a) Li ₂	b) H ₂	c) N ₂	d) He ₂
14.	The wave nature	e of electron can be ve	rified by	
	a) J.J.Thomson e	experiment	c) G.P.Thomson'	's experiment
	b) Milliken's oil	drop experiment	d) Black body rad	diation
15.	The circumferen	ce of the circular orbi	t of the electron shou	uld be an integral multiple of
	a) Planck's cons	tant	c) de-broglie way	velength
	b) Frequency of	light of radiation	d) Momentum of	the electron
16.	A dumb bell sha	ped orbital is		
	a) p-orbital	b) dxy orbital	c) dyz orbital	d) s-orbital
17.	The type of hybr	ridisation in CO ₃ ²⁻ is		
	a) sp	b) sp ²	c) sp^3	d) sp^3d^2
18.	The type of hybr	ridisation in ICl4 ⁻ is		
	a) sp ³	b) sp ³ d	c) sp^3d^2	d) sp^3d^3
19.	In a set of degen	erate orbitals the elect	trons distribute them	selves to retain similar spins
	as far as possible	e. This is the statemen	t of	
	a) Pauli's exclus	ion principle	c) Hund's rule	
	b) Aufbau princi	iple	d) Slater's rule	
20.	The momentum	of particle which has	de-Broglie waveleng	gth of 1A°
	$(h = 6.626 \times 10^{-5})$	34 kg m ² s ⁻¹) is	12821	
V	a) 6.6 x 10 ⁻²³ kg	gms ⁻ D ²	c) 6.6 x 10 ⁻³⁴ kg i	
	b) 6.6 x 10 ⁻²⁴ kg	g.ms ⁻¹	d) 6.6 x 10 ³⁴ kg r	ns ⁻¹
21.	The bond order	of nitrogen molecule i	S	
~~	a) 1	b) 2	c) 3	d) 4
22.	The nature of hy	$\frac{1}{2}$ bridisation in IF ₇ mol	ecule 1s	1 2 14
22	a) sp ³ d ²	b) sp ³ d ⁴	c) sp ³ d ³	d) sp^2d^4
23.	Inter-molecular	hydrogen bonding is p	bresent in	1) 11 C.4
24	a) HF	$D H_2 U$	c) ethanol	d) all of these
24.	The hybridisatio	in involved in XeF_6 is	a) an ³ 4	d) an ³
25	a) sp ^o d	D) Sp ^o u ⁻	c) sp ^o d	d) sp ^o
25.	energy levels of	molecular orbitals ha	a) Crystellograph	via studios
	a) Spectroscopic	ion	d) none of these	ne studies
26	In a molecule ei	ut electrons are press	u) none of these	ular orbital and four electron
20.	in anti-bonding	molecular orbital. Ita I	Rond order is	
	a) 3	h) 4	c) 2.5	d) 2
27	Water exists in 1	iquid state. This is du	e to	~, <i>_</i>
_/.				

	a) High boiling point				c) Freezing point is zero				
	b) Low boi	ling point			d) Hydrogen bond				
28.	The hybridisation in SO_4^{2-} ion is								
	a) sp^3	b) sp^3d^2		c) sp ³ d		d) sp^3d^3	3	
29.	Number of	spherical	nodes in 2	s orbital	is				
	a) 1	r t) 2		c) 3		d) 4		
30.	Inter-molec	cular hydro	gen bondi	ing is pre	esent in		,		
	a) o-nitro p	henol	e	e i	c) o-hydi	roxy benz	aldehyde		
	b) salicylic	acid			d) hydro	gen fluori	de		
31.	The type of	f hybridisa	tion of PC	l ₅ molec	ule is	0			
	a) sp^3d^2	t t) sp ³ d		c) sp^3		d) sp ²		
32.	In a molect	ule when N	b = 8 and	Na = 2,	Then the b	oond orde	r is		
	a) 3	t) 4		c) 2.5		d) 2		
1	2	3	4	5	6	7	8	9	10
b	с	d	а	C	b	c	d	b	a
11	12	13	14	15	16	17	18	19	20
c	a	с		C <1	a	b	c	c	b
21		$\overline{237}$	24	2.5	26	27	28	29	30
c			<u>a</u>		$(\mathbf{d}\mathbf{S})$		lla o	∠ a) (
31	32								
b	a								
				IFC	SON 2				
			PERI	<u>les</u> ODIC CL	<u>assifica</u> '	TION - II			
			BC	OOK BAC	CK ONE M	ARKS			
01.	The value of	of C-C dist	ance foun	d experii	mentally ir	n a saturat	ed hydroc	arbon is	
	a) 1.34 A ^o	t) 1.36 A ^o		c) 1.54 A	A ^o	d) 1.56	A ^o	
02.	On moving	, down the	group, the	e radius c	of an ion				
	a) Decrease	es t) Increase	s	c) No ch	ange	d) None	9	
03.	Effective n	uclear cha	rge (Z*) ca	an be cal	culated by	using the	formula		
	a) Z* = Z -	- S t) $Z^* = Z -$	+ S	c) Z* = \$	S-Z	d) $Z = Z$	Z*– S	
04.	Pick out the	e correct st	atement						
	a) Carbon i	is having n	ore nucle	ar charge	e than bord	on			
	b) The size	of carbon	atom is la	rger thar	n boron				
	c) Carbon f	forms elect	ron defici	ent comp	ounds				

	d) Carbon forms ionic compounds	
05.	Among the following which has h	igher electron affinity value?
	a) Fluorine b) Chlorine	c) Bromine d) Iodine
06.	Comparing the ionization energy of	of fluorine with carbon, Fluorine has
	a) Higher ionization energy	c) Same ionization energy
	b) Lower ionization energy	d) None of these
07.	Which among the following has the	e maximum ionization energy?
	a) Alkali metals	c) Halogens
	b) Alkaline earth metals	d) Noble gases
08.	The electron affinity of an atom is	
	a) Directly proportional to its size	c) Independent of its size
	b) Inversely proportional to its size	e d) none of these
09.	The scale which is based on an em	pirical relation between the energy of a bond and the
	electronegativity of bonded atom i	s
	a) Pauling scale	c) Sanderson's scale
	b) Mulliken's scale	d) Alfred and Rochow's scale
10.	Electron affinity is expressed in	
	a) kJ b) J	c) kJ mol d) kJ mol ⁻¹
	The bond length of Cl ₂ molecule is	NASALAI NAÍ
V	a) 0.74 A° (b) 1.44 A°	c) 1.98 A° d) 2.28 A°
12.	The order of ionization energy is	
	a) $s b) s > p > d >$	f c) $s > d > p > f$ d) $s < d < p < f$
13.	Across a period, electron affinity	
	a) Decreases	c) Decreases and then increases
	b) Increases	d) Increases and then decreases
14.	Noble gases have electron	affinity
	a) high b) Low	c) zero d) very high
15.	When XA >> XB, A-B bond is	
	a) polar covalent	b) non-polar covalent
	c) ionic	d) Metallic
	<u>PUBLI</u>	<u>U UNE MAKKS</u>
16.	The metal having maximum electr	on affinity is
	a) sodium b) calcium	c) gold d) silver
1		5 6 7 8 9 10

www.Padasalai.Net www.TrbTnpsc.com

С	b	a	a	В	a	d	b	а	d		
11	12	13	14	15	16						
C	b	b	С	C	C						
<u>LESSON – 3</u> p <u>-BLOCK ELEMENTS</u> <u>BOOK BACK ONE MARKS</u>											
01. V	01. Which of the following does not belong to group 13?										
8	i) B	1	b) Al		c) Ge		d) In				
02. V	Which of th	he followi	ng is most	t abundant	t in earth's	s crust?					
8	() C	1	b) Si		c) Ge		d) Sn				
03. <i>A</i>	An element	t which wa	as burnt ir	n limited s	upply of a	ir to give	oxide A w	which on t	reatment		
V	with water	gives an a	cid B. Ac	id B on he	eating give	es acid C	which give	es yellow			
Į	orecipitate	with AgN	O ₃ solutio	on A is							
8	$O SO_2$	1	b) NO ₂		c) P ₂ O ₃		d) SO ₃				
04. 7	The compo	und with g	garlic odo	ur is							
8	a) P_2O_3	1	b) P_2O_5		c) H ₃ PO	3	d) H ₃ PC	\mathbf{D}_4			
	The shape of) pyramida) linear	of PCl5 is		210	b) trigon d) tetrahe	al bipyran edral	nidal .				
06.	The compo	und used	as smoke	screen is							
8) PCl ₃		b) PCl ₅		c) PH ₃		d) H ₃ PC	\mathbf{D}_3			
07. V	Which show	ws only –	1 oxidatio	on state?							
8) fluorine		b) bromin	e	c) chlorin	ne	d) iodin	e			
08. (One can dra	aw the ma	p of build	ing on a g	lass plate	by					
ź) HI) HF		c) HBr	d) He	Cl				
09.	Among the	halogen a	icid, the w	veakest ac	id is						
8) HF		b) HCl	c) HB	r d)	HI					
10. I	Halogens b	elong to the	he group i	number							
8	.) 14	1	b) 15		c) 17		d) 18				
11. 7	The noble g	gases are u	inreactive	because t	hey						
8	have sat	me numbe	r of electr	ons							
t	b) have an	atomicity	ot one								
C	are gase	es with lov	v densities	S							
10 7	i) have sta	of VoF	onic confi	guration							
12.	ne snape (UI ACF4 18		onepair is							

a) tetrahedral b) octahedral	
c) square planar d) pyramidal	
13. Which is not known?	
a) XeF_6 b) XeF_4	
c) XeO_3 d) ArF_6	
14. The lightest gas which is non-inflammable is	
a) He b) H_2 c) N_2 d) Kr	
15. Which of the following has highest first ionisation energy?	
a) He b) Ne c) Ar d) Kr	
PUBLIC ONE MARKS	
16. Electronic configuration of 14 th group element (Carbon Family) is	
a) ns^2np^2 b) ns^1np^1 c) ns^1np^2d d) ns^2np^1	
17. The metalloid among the following	
a) Pb b) P c) Ge d) Sn	
18. The toxic element of Boron Family is	
a) Boron b) Indium c) Thallium d) Gallium	
19. Which of the following does not belong to group 14?	
a) C b) Si c) Ga d) Pb	
20. Which of the following has the property of etching on glass ?	
a) HI b) HF c) HBr d) HCl	
21. The compound used to arrest bleeding is	
a) K_2SO_4 b) Potash alum c) $Al_2(SO_4)_3$ d) KI	
22. Which of the following shows negative oxidation state only?	
a) Br b) F c) Cl d) I	
23. An element which belongs to Group 14 is soft in nature, does not react with p	oure water,
dissolves in water containing dissolved air. Then the element is	
a) C b) Ge c) Pb d) Ti	
24. Inert gas used in beacon lights for safety of air navigation is	
a) Helium b) Argon c) Neon d) Xenon	
25. Which of the following is the second most abundant element in earth's crust?	
a) Carbon b) Silicon c) Germanium d) Tin	
26. The hybridisation in PCl ₅ molecule is	
a) sp^3 b) sp^3d^2 c) sp^3d d) sp^2	
27. The compound with garlic taste is	
a) H_3PO_4 b) H_3PO_3 c) P_2O_3 d) P_2O_5	

www.Padasalai.Net www.TrbTnpsc.com

1		2	4			7	0	0	10		
	2	3	4	5	6	1	8	9	10		
C	b 12	C	a 14	b	C 1C	a 17	b	a 10	с 20		
	12	13	14	15	16	1/	18	19	20		
d	C 22	d 22	a 24	a 25	a 26	с 27	C	C	b		
<u>21</u>	22	23	24	25 1-	26	27 D					
D	D	C	C	D LESS	C	В					
d-BLOCK ELEMENTS											
	BOOK BACK ONE MARKS										
01. T	01. The general electronic configuration of d-block elements is										
a	$(n-1) d^{1}$	$^{-10}$ ns ⁰⁻²			b) (n - 1)	$d^{1-5} ns^2$					
c	$(n-1) d^{0}$	ns^1			d) (n − 1)) $d^{1-10} ns^{1}$	-2				
02. F	ormation of	of coloure	d ions is p	ossible w	hen comp	ounds cor	itain				
a) paired ele	ectrons			b) unpair	ed electro	ns				
c) lone pairs	s of electr	ons		d) none c	of the above	ve				
03. P	aramagnet	tism is cor	nmon in								
a) p-block e	elements			b) d-bloc	k element	S				
С) s-block e	lements		1	d) f-bloc	k element	s o		4		
04.\\\\ T	he colour	of [Ti(H ₂ ($(2)_{6}]^{3+1}$ ion	is due	Í R		21				
a) d-d transi	ition			b) presen	ice of wat	er molecu	les			
c) inter ator	nic transfe	er of elect	rons	d) None	of the abo	ve				
05. T	he outerm	ost electro	onic confi	guration o	of chromiu	ım is					
a) $3d^6 4s^0$	I I	b) $3d^5 4s^1$		c) $3d^4 4s^4$	2	d) 3d ³ 4	$s^2 4p^1$			
06. P	aramagnet	tism is the	property	of	,		,	Ĩ			
a) paired ele	ectrons			b) compl	etely fille	d electron	ic subshel	ls		
c) unpaired	electrons			d) compl	etely vaca	nt electro	nic subsh	ells		
07. d	-block elei	ments from	n coloure	d ions bec	ause	5					
a) They ab	sorb some	e energy fo	or d-s tran	sition						
b) They ab	sorb some	e energy fo	or p-d trar	nsition						
С) They ab	sorb some	e energy fo	or d-d trar	nsition						
d) They do	not absor	b any ene	rgy							
08. T	The correct	outer mos	st electron	ic config	uration of	copper at	om is				
a) $3d^{10} 4s^1$	}	b) $3d^{10} 4s^2$	2	c) $3d^9 4s^3$	2	d) 3d ⁵ 4	$s^2 4p^4$			
09. C	Copper is e	xtracted f	com		.,			r			
а я) cuprite				b) conner	r glance					
u C) malachite	ב.			d) conner	r nyrites					
C	, maracinu				a) coppe	r pyrites					

	c) They form coloured ions and compl	ex salts					
	d) All above statements are correct						
21.	Which compound is formed when exce	ss of KCN is added to	o an aqueous solution of				
	copper sulphate?						
	a) $Cu(CN)_2$	b) $K_2[Cu(CN)_6]$					
	c) $K[Cu(CN)_2]$	d) $Cu_2(CN)_2 + (CN)_2$	\mathbf{J}_{2}				
22.	Which of the following has the maximu	Im number of unpaire	ed electrons?				
	a) Mn^{2+} b) Ti^{3+}	c) V ³⁺	d) Fe^{2+}				
23.	Among the following statement, the inc	correct one is					
	a) Calamine and siderite are carbonate	S					
	b) Argentite and cuprite are oxides						
	c) Zinc blende and pyrites are sulphide	s					
	d) Malachite and azurite are ores of co	pper					
24.	The chemical composition of slag form	ed during the smeltin	g process in the extraction				
	of copper is						
	a) $Cu_2O + FeS$ b) $FeSiO_3$	c) Cu FeS ₂	d) $Cu_2S + FeO$				
25.	The transition element with the lowest	atomic number is					
	a) Scandium b) Titanium	c) Zinc	d) Lanthanum				
26.	Which transition element show highest	oxidation state?	ai Nat				
\bigvee	a) Sc	OOS OU (d) Zno L V C C				
	PUBLIC ON	<u>E MARKS</u>					
27.	The catalyst used in the manufacture of						
	a) V_2O_5 b) Fe	c) Pt	d) TiCl ₄				
28.	Spitting of silver can be prevented by c	overing the molten m	netal with				
	a) Sodium carbonate	c) Calcium chlorid	e				
• •	b) Charcoal	d) Calamine					
29.	Bordeaux mixture is a mixture of		_				
	a) Copper sulphate and lime	c) $K_2Cr_2O_7 + H_2SC$) 4				
	b) Silver nitrate and sodium chloride	d) $K_2CrO_4 + H_2SO_4$	4				
30.	Which of the following pairs have almost	ost equal atomic radii	?				
	a) Mo, W b) Y, La	c) Zr, Hf	d) Nb, Ta				
31.	A d-block metal ion has a magnetic mo	ment of 1.732 BM. T	The number of unpaired				
	electrons in it is		N 4				
	a) 1 b) 2	c) 3	d) 4				
32.	Purity of Blister copper is						

	a) 100%	b) 98%	c) 90%	d) 12%
33.	The substance used	1 in making ruby red	glass and high class	potterv is
	a) Colloidal silver		c) Ruby silver	
	b) Purple of cassiu	S	d) Ruby copper	
34.	The metal used in	galvanising iron shee	ts is	
	a) Chromium	b) zinc	c) copper	d) Silver
35.	K ₂ Cr ₂ O ₇ reacts wit	h KI and dilute sulph	uric acid and liberate	es
	a) O ₂		b) I ₂	
	c) H ₂		d) SO ₂	$\mathbf{\cap}$
36.	Ferrochrome is an	alloy of		
	a) Cr, C, Fe, Ni		b) Cr, Co, Ni, C	
	c) Fe, Cr		d) Cr,Ni, Fe	
37.	The colour of Purp	le of cassius is		
	a) Purple	b) Blue	c) Bluish green	d) Apple green
38.	Silver obtained fro	m silver coin is purif	ied by fusion with	
	a) AgNO ₃	b) HNO ₃	c) H ₂ SO ₄	d) Borax
39.	The number of unp	oaired electrons in Ti	³⁺ is 1. Its magnetic n	noment in BM is
	a) 1.414	b) 2	c) 1.732	d) 3 7
40.	A metal which pre	cipitates gold from it	s aurocyanide compl	exis
\vee	a) Cr	b) Ag	c)PtD (ULL(d) Zno L V C C
41.	The reagent which	is added first in the s	separation of silver fr	rom silver coin is
	a) Con.Sulphuric a	cid	c) Con.Nitric acid	
	b) Con.Hydrochlor	ic acid	d) Aqua regia	
42.	If the magnetic mo	ment value is 5.92 B	M, the number of un	paired electrons is
	a) 5	b) 3	c) 4	d) 6
43.	Which one of the f	ollowing will have m	naximum magnetic m	oment?
	a) 3d ²	b) 3d ⁶	c) 3d ⁷	d) 3d ⁹
44.	The most malleabl	e and ductile of all th	e metals is	
	a) Silver	b) Gold	c) Copper	d) Chromium
45.	The metals present	in Nichrome alloy is	3	
	a) Cr, Ni, Fe		b) Cr, Co, Ni	
	c) Cr, Fe		d) Cr, Fe, Cu	
46.	The alloy used in t	he manufacture of rea	sistance wires is	
	a) Ferro-chrome		b) Bronze	
	c) Nichrome		d) Stellite	

1	2	3	4	5	6	7	8	9	10
d	b	b	a	b	С	c	a	d	d
11	12	13	14	15	16	17	18	19	20
c	b	d	d	b	a	d	d	c	d
21	22	23	24	25	26	27	28	29	30
d	a	b	b	a	c	d	b	a	c
31	32	33	34	35	36	37	38	39	40
a	b	b	b	b	с	a	d	с	d
41	42	43	44	45	46				
с	a	b	b	a	с				

LESSON - 5 **<u>f-BLOCK ELEMENT</u> BOOK BACK ONE MARE**

d) [Rn] 5f⁰⁻¹⁴ 6d⁰⁻² 7s²

- 01. The electronic configuration of Lanthanides is a)[Xe] $4f^0 5d^0 6s^0$ b) [Xe] 4f¹⁻⁷ 5d¹ 6s d) [Xe] $4f^{1-14} 5d^{1-10} 6s^2$ c)[Xe] $4f^{1-14} 5d^{0-1} 6s^2$ The electronic configuration of Actinides is 02. b) [Rn] 5f⁰⁻¹⁴ 6d⁰⁻² 7s⁰
 - a) [Rn] $5f^{0-14}$ $6d^{0}$ $7s^{0}$ c) [Rn] $5f^{0-14} 6d^{0-2} 7s^{1}$

The lanthanide contraction is responsible for the fact that 03.

- a) Zr and Y have about the same radius
- b) Zr and Nb have similar oxidation state
- c) Zr and Hf have about the same radius
- d) Zr and Zn have the same oxidation state
- The most common oxidation state of lanthanides is 04.
 - a) + 2 b) + 1 c) + 3
- Lanthanides are extracted from 05.
- a) Limonite b) Monazite c) Magnetite d) Cassiterite 06. The elements in which the extra electron enters (n - 2) f orbitals are called a) s block elements b) p block elements d) f block elements
 - c) d block elements
- 07. The Lanthanides contraction is due to
 - a) Perfect shielding of 4f electron
 - c) Perfect shielding of 3d electron
- b) Imperfect shielding of 4f electron d) imperfect shielding of 3d electron

d) + 4

08. Ceria is used in

http://www.trbtnpsc.com/2013/07/latest-12th-study-materials-2013.html

	a) tovs	b) tracer bullets	c) gas lamp mater	rials d) none		
09.	is used in	gas lamp material.	, 8 ^m 1			
	a) MnO ₂	b) CeO ₂	c) N ₂ O ₅	d) Fe_2O_3		
10.	Alloys of Lanthani	des are called as	-, 2 - 3	.,		
101	a) Mish-metals	b) Metalloids	c) Plate metals	d) Actinides		
11.	Metallothermic pro	cesses involving La	nthanides are called	88		
	a) Aluminothermi	c process	b) L anthanido-thermic process			
	d) Reduction proc	ess	d) Oxidation proc	cess _		
12.	from oxoc	ations.	r,			
	a) lanthanides	b) Actinides	c) Noble gases	d) Alkalimetals		
13.	Maximum oxidation	on state exhibited by	Lanthanides is			
	a) +1	b) +2	c) +3	d) +4		
14.	Lanthanides are se	parated by		, ,		
	a) Fractional distill	lation	b) Steam distillat	ion		
	c) Fractional Cryst	allisation	d) Sublimation			
			$\sim \sim$			
		PUBLIC ON	E MARKS	•		
				0 5 5		
15	The oxidation state	of Uranium in UO ₂	Cl ₂ is	91 Not		
\bigvee	a) +2	b) <u>+</u> 4	c)+3) (]]			
16.	The fuel in nuclear	power plants is				
	a) U-235	b) Pu-238	c) CeO ₂	d) Np-238		
17.	The actinide contra	action is due to				
	a) Perfect shielding	g of 5f electron	b) Imperfect shiel	lding of 4f electron		
	c) Imperfect shield	ing of 5f electron	d) Perfect shieldin	ng of 4f electron		
18.	Which element in	Lanthanides is radioa	ctive?			
	a) Terbium	•	b) Lutetium			
	c) Promethium		d) Gadolinium			
19.	The isotope used in	n nuclear fission reac	tion is			
	a) Copper		b) Uranium			
	c) Lead		d) Radium			
20.	The most common	oxidation state amor	ng actinides is			
	a) +4	b) +2	c) +3	d) +1		
21.	is used as	a power source in lo	ong mission space p	robes		
	a) U-235	b) U-232	c) Pu-238	d) Pu-241		
22.	Among the Lantha	nide elements, with t	he increase in atom	ic number the tendency to act		
	as reducing agent					

	a) Increase	h) Decrease			
	a) Mochange	d) None			
22	Thoria is used in	u) None			
23.		b) The control late			
		b) Tracer bullets			
2.4	c) Gas lamp materials	d) Dyeing cotton			
24.	is the oxidation state of U in	UF ₆			
	a) +6 b) +4	c) $+3$ d) 0			
25.	According to Fajan's rule decreases in	n size of Ln^{3+} ion in $Ln(OH)_3$			
	a) Increase the covalent character	b) Decreases the covalent character			
	c) Increase the basic character	d) Increases the ionic character			
26.	Which of the following lanthanides ha	ave no partly filled 4f sub-shell but have the			
	electrons in 5d sub-shell?				
	a) Ce b) Lu	c) Pm d) Nd			
1	2 3 4 5	6 7 8 9 10			
c	d c c b	d b c b a			
11	12 13 14 15	16 17 18 19 20			
b	b d c d	a c c b a			
21	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9 26 9 91			
Ċ					
		LESSON 6			
	CO-08	CINATION COMPOUNDS			
	BO	OK BACK ONE MARKS			
01.	Which is a double salt?				
	a) K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H ₂ O	b) NaCl			
	c) $K_4[Fe(CN)_6]$	d) KCl			
02.	An example of a complex comound ha	aving coordination number 4			
	a) $K_4 [Fe (CN)_6]$	b) $[Co (en)_3] Cl_3$			
	c) [Fe $(H_2O)_6$] Cl ₃	d) [Cu (NH ₃) ₄] Cl ₂			
03.	The geometry of $[Cu (NH_3)_4]^{2+}$ compl	lex ion			
	a) Linear b) Tetrahedral	c) Square planar d) Angular			
04.	An example of a chelating ligand is	/ I I // 6			
•	a) NO_2^- b) Chloro	c) Bromo d) en			
05.	The geometry of complex ion [Fe (CN	V_{β} ⁴⁻ is			
	a) tetrahedral	b) square planar			
		e, equite printer			

	c) octahedral		d) triangular		
06.	The oxidation num	ber of Nickel in the c	complex ion [NiCl ₄] ²	- is	
	a) + 1	b) -1	c) +2	d) -2	
07.	Which is not anion	ic complex?			
	a) [Cu(NH ₃) ₄]Cl ₂	b) K ₄ [Fe(CN) ₆]	c) $K_3[Fe(CN)_6]$	d) [NiCl ₄] ²⁻	
08.	The geometry of [N	Ni (CN)4] ²⁻ is			
	a) Tetrahedral	b) Square planar	c) Triangular	d) Octahedral	
09.	An example of an a	ambidentate ligand is			
	a) CN⁻	b) Cl ⁻	c) NO_2^-	d) I⁻	
10.	[FeF ₆] ⁴⁻ is paramag	netic because			
	a) F ⁻ is a weaker lig	gand	b) F ⁻ is a strong li	gand	
	c) F ⁻ is a flexidenta	te ligand	d) F ⁻ is a chelating	g ligand	
11.	In $[Fe^{ll}(CN)_6]^{4-}$, the	e central metal ion is			
	a) Fe	b) Fe ⁺²	c) Fe ⁺³	d) CN⁻	
12.	The coordination n	umber of Ni (ll) in [N	Ni (CN)4] ²⁻ is		
	a) 2	b) 4	c) 5	d) 6	
13.	The name of [Pt ^{IV} ()	$NH_3)_2Cl_2]^{2+}$ is			
	a) Diamminedichlo	oroplatinum (IV) ion			
	b) Diamminedichle	proplatinate (IV)	222		
V	c) Diamminedichlo	oroplatinum		LLOL VOU	
	d) Dichlorodiammi	neplatinum (IV) ion			
14.	For a compound K	4[Fe (CN)6] the comp	olex ion is		
	a) K ⁺	b) CN-	c) Fe ²⁺	d) [Fe (CN) ₆] ⁴⁻	
15.	A metal ion from the	he first transition seri	es forms an octahedr	al complex with magnetic	
	moment of 4.9 BM	1 and another octahed	dral complex which i	s diamagnetic. The metal	
	ion is				
	a) Fe ²⁺	b) Co ²⁺	c) Mn^{2+}	d) Ni^{2+}	
16.	Paramagnetic mom	ent is expressed in			
	a) Debye unit	b) K joules	c) BM	d) ergs	
17.	The type of isomer	ism found in the com	plexes [Co(NO ₂)(NI	$H_3)_5$] SO ₄ and	
	$[Co(SO_4)(NH_3)_5] N$	IO_2			
	a) Hydrate isomeris	sm	b) Coordination iso	omerism	
	c) Linkage isomeri	sm	d) Ionisation isome	erism	
18.	Valence bond theor	ry does not explain th	ne property of comple	ex compound	
	a) geometry		b) magnetic		
	c) nature of ligand		d) colour		

	PUBLIC	ONE MARKS				
19.	The complex used for electron transfer	ris				
	a) Haemoglobin	b) Ferredoxin				
	c) Chlorophyll	d) Myoglobin				
20.	The type of isomerism found in the co	mplexes [Pt(NH ₃) ₄][CuCl ₄] and[Cu(NH ₃) ₄][PtCl ₄]				
	is					
	a) ionization isomerism	c) co-ordination isomerism				
	c) linkage isomerism	d) ligand isomerism				
21.	Which of the following is cationic con	nplex ?				
	a) K ₄ [Fe(CN) ₆] b) [Cu(NH ₃) ₄]Cl ₂	c) $K_3[Cr(C_2O_4)_3]$ d) $K_3[Fe(CN)_6]$				
22.	The co-ordination number of Cr(III) in	$1 [Cr(H_2O)_4Cl_2]Cl.2H_2O$ is				
	a) 3 b) 4	c) 6 d) 2				
23.	An example oh bidentate chelating lig	and is				
	a) NO ₂ ⁻ b) NO ₃ ⁻	c) en d) SO_4^{2-}				
24.	The co-ordination number of Nickel in	the complex ion [NiCl4] ²⁻ is				
	a) +1 b) +4	c) $+2$ d) $+6$				
25.	Chlorophyll is a complex					
	a) Magnesium – Porphyrin	b) Iron - Porphyrin				
V	c) Copper – Porphyrin	d) Nickel – Porphyrin				
1	2 3 4 5	6 7 8 9 10				
a	d c d c	c a b c a				
11	12 13 14 15	16 17 18 19 20				
b	b a d a	c d b b b				
21	22 23 24 25					
b	c c b a					
		ESSON – 7				
	NUCLEA	AR CHEMISTRY				
	BOOK BA	ACK ONE MARKS				
01.	The phenomenon of radioactivity was	discovered by				
	a) Madam curie b) Pierre curie					
	c) Henry Becquerrel d) Rutherford					
02.	The most penetrating radiations are					
	a) α rays	b) β rays				
	c) γ rays	d) all are equally penetrating				

03.	In the nuclear reaction ${}_{92}U^{238} \rightarrow {}_{82}Pb^{206}$	the number of α and β particles emitted are
	a) 7α , 5β	b) 6α , 4β
	c) 4α , 3β	d) 8α , 6β
04.	Which one of the following particles is	used to bombard ${}_{13}Al^{27}$ to give ${}_{15}p^{30}$ and a
	neutron?	
	a) α particle	b) deuteron
	c) proton	d) neutron
05.	The reaction ${}_5B^8 \rightarrow {}_4Be^8$ takes place due	e to
	a) α decay	b) β decay
	c) γ emission	d) position decay
06.	Radioactivity is due to	
	a) Stable electronic configuration	b) Stable nucleus
	c) Unstable nucleus	d) Unstable electronic configuration
07.	In the following radioactive decay, $_{92}X$	$^{232} \rightarrow {}_{89}y^{220}$, how many α and β particles are
	ejected.	
	a) 3α and 3β b) 5α and 3β	c) 3α and 5β d) 5α and 5β
08.	$_{92}U^{235}$ nucleus absorbs a neutron and di	sintegrates into ${}_{54}$ Xe 139 , ${}_{38}$ Sr 94 and x. What will
	be the product x?	
\sum	a) 3 neutrons (b) 2 neutrons	c) α particle d) β -particle
09. V	Loss of a β – particle is equivalent to	
	a) Increase of one proton only	
	b) Decrease of the one neutron only	
	c) Both (a) and (b)	
	d) None of these	
10.	Which of the following is used as neutr	on absorber in the nuclear reactor?
	a) water	b) Deuterium
	c) some compounds of uranium	d) cadmium
	<u>PUBLIC C</u>	<u>DNE MARKS</u>
11.	After 24 hours 0.125 g of the initial qua	ntity 1 g of a radioactive isotope is left out. The
	half life period is	
	a) 24 hours b) 12 hours	c) 8 hours d) cannot be determined
12.	When $_7N^{15}$ is bombarded with a proton	it gives ${}_{6}C^{12}$ and
	a) α-particle	b) β-particle
	c) neutron	d) proton
13.	In nuclear reaction is / are balan	nced on both sides

	a) Unit cell	b) Space lattice			
03.	A regular three dimensional arrangemen	ee dimensional arrangement of identical points in space is called			
02	$c_{j} 2\lambda = \ln \sin \theta$	$u) n \lambda = 2u \sin\theta$			
	a) $\lambda = 20 \text{ sm}\theta$	$d) = 2\lambda \sin \theta$			
02.	The Bragg s equation is	\mathbf{b} and \mathbf{c} \mathbf{c}			
02	a) \angle b) 8 The Press's equation is	c) o d) 4			
01.	The number of chloride ions that surrous	nds the central Na ⁺ ion in NaCl crystal is			
		AL OIVE MARINO			
	SOLID BOOK BAC	<u>STATE – II</u> 'K ONF MARKS			
		<u>SON – 8</u>			
<u> </u>	a d a d	a d b C			
11	12 13 14 15	16 17 18 19			
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
1					
	a) 10, 4p	$(c) \delta(a, 4p) = (c) \delta(a, 4p) = (c) \delta(a, 4p)$			
19.	In the nuclear reaction, $901n^{-2} \rightarrow 82Pb^{-2}$, the number of α and p-particles emitted are			
10	a) $_{+1}e^{0}$ b) $_{-1}e^{0}$	c) $_{1}H^{1}$ d) $_{2}He^{4}$			
18.	β -particle is representes as				
10	c) Uranium	d) Promethium			
	a) Thorium	b) Lanthanum			
17.	Radioactive element of lanthanide is				
	c) 261 days	d) 26.1 days			
	a) 216 days	b) 21.6 days			
16.	Half life period of 79Au ¹⁹⁸ nucleus is 150) days. The average life is			
	c) 200 seconds	d) 144 seconds			
	a) 100 seconds	b) 50 seconds			
15.	Half life period of a radioactive element	is 100 seconds. Its average life period is			
	c) 0.1465 x 10 ⁻⁸ s ⁻¹	d) 0.3465 x 10 ⁻¹⁰ s ⁻¹			
	a) 0.1465 x 10 ⁻¹⁰ s ⁻¹	b) 0.2465 x 10 ⁻¹⁰ s ⁻¹			
	constant in terms of second ⁻¹ is				
14.	Half life period of a radioactive element	is 1500 years. The value of disintegration			
	c) mass number	d) atomic number and mass number			
	a) mass	b) number of atoms			

	c) Primitive	d) Crystallography
04.	The smallest repeating unit in spa	ce lattice which when repeated over and again results
	in the crystal of the given substanc	e is called
	a) space lattice	b) crystal lattice
	c) unit cell	d) lsomorphism
05.	The crystal structure of CsCl is	
	a) Simple cubic	b) face- centered cubic
	c) Tetragonal	d) Body centered cubic
06.	An example for frenkel defect is	
	a) NaCl	b) AgCl
	c) CsCl	d) FeS
07.	Semiconductors which exhibit con	ductivity due to the flow of excess negative electrons
	are called	
	a) Super conductors	b) n-type semiconductors
	c) p-type semiconductors	d) Insulators
08.	In the Bragg's equation for diffrac	tion of X-rays, 'n' representss
	a) The number of moles	b) Avogadro number
	c) A quantum number	d) Order of reflection
09.	The number of close neighbours in	a body centred cubic lattice of identical spheres is
$\langle \rangle$	a) 6 V V b) 4	$(c)_{12} O(10 O_d)_8 \circ 1 \vee 0 \cup$
10.	The crystals which are good condu	ctors of electricity and heat are
	a) lonic crystals	b) Molecular crystals
	c) Metallic crystals	d) Covalent crystals
11.	In a simple cubic cell, each point o	on a corner is shared by
	a) One unit cell	b) Two unit cell
	c) 8 unit cell	d) 4 unit cell
12.	The ability of certain ultra cold sul	ostances to conduct electricity without resistance is
	called	
	a) Semiconductor	b) Conductor
	c) Superconductor	d) Insulator
13.	The total number of atoms per unit	t cell is bcc is
	a) 1 b) 2	c) 3 d) 4
14.	Rutile is	
	a) TiO_2 b) Cu_2O	c) MoS_2 d) Ru
15.	Semiconductors are used as	
	a) rectifiers	b) transistors

		www.Padasalai.N	let	WW	w.TrbTnps	sc.com		
					_			
1.6	c) solar cells			d) all the	above			
16.	An example of	of metal of metal d	leficiency	defect				
	a) NaCl	b) AgCl		c) CsCl		d) FeS		
	PUBLIC ONE MARKS							
. –								
17.	When an ion sites are called	leaves its regular s d	site occup	oies a posit	tion in the	space bet	tween the	lattice
	a) Schottky de	efect		b) Frenke	el defect			
	c) Impurity de	efect		d) Vacan	cy defect			
18.	The 8 : 8 type	of packing is prea	sent in					
	a) MgF ₂	b) CsCl		c) KCl		d) NaCl		
19.	The total num	iber of atoms per u	unit cell i	n fcc syste	em is			
	a) 1	b) 4		c) 6		d) 8		
20.	Which one of	the following has	AB type	crystal wi	ith co-ord	ination nu	mber 4 ?	
	a) CsCl	b) TiO ₂		c) ZnS		d) BN		
21.	The size of th	e anion in Frenkel	l defect ci	rystal is				
	a) Larger than	n the cation	1	c) Smalle	er than the	cation		Л
\sum	c) Equal in size	ze with cation		d) Both a	re larger	in size		
22.	The crystal la	ttice with co-ordin	nation nu	mber four	is ll (JUL 0.		
	a) CsCl	b) ZnÒ		c) BN		d) NaCl		
1	2	3 4	5	6	7	8	9	10
c	d	b c	d	b	b	d	d	c
11	1 12	13 14	15	16	17	18	19	20
C C	C C	b a	d	d	b	b	b	c
2	22							
a	0							
			IFS	SON - 0				
	THERMODYNAMICS – II							
	BOOK BACK ONE MARKS							
01.	The amount o	of heat exchanged	with the s	surroundir	ig at const	tant tempe	erature and	1
	pressure is cal	lled						
	a) ΔE			b) ΔH				
	c) ΔS			d) ΔG				

02.	All the naturally	occurring processes	proceed spontaneousl	y in a direction which leads
	to			
	a) Decrease of er	itropy	b) increase in en	thalpy
	c) increase in fre	e energy	d) decrease of fr	ree energy
03.	In an adiabatic w	hich of the followin	g is true?	
	a) q=W	b) q=0	c) $\Delta E = q$	d) $P\Delta V = 0$
04.	When a liquid bo	ils, there is		
	a) an increase in	entropy	c) an increase in h	neat of vapourisation
	b) a decrease in e	entropy	d) an increase in f	free energy
05.	If ΔG for a reacti	on is negative, the c	hange is	
	a) Spontaneous		b) Non-spotane	ous
	c) Reversible		d) Equilibrium	
06.	Which of the foll	owing does not resu	lt in an increase in the	entropy?
	a) Crystallisatio	n of sucrose from so	lution	
	b) rusting of iron	1		
	c) conversion of	ice to water	$\wedge \vee$	
	d) vapourisation	of camphor		
07.	In which of the f	ollowing process, th	e process is always no	n-Feasible?
\sum	a) $\Delta H > O, \Delta S >$		b) $\Delta H < O, \Delta S > O$	n Nat
/	c) $\Delta H > O, \Delta S < 0$	j ozla igue	d) $\Delta H < O, \Delta S < O$	
08.	Change in Gibb'	s free energy is give	n by	
	a) $\Delta G = \Delta H + T \Delta$	Ś	b) ΔG = ΔH - T	ΓΔS
	c) $\Delta G = \Delta H \times T \Delta$	S	d) None of the	above
09.	For the reaction 2	$2Cl_{(g)} \rightarrow Cl_{2(g)}$ the sign	is of ΔH and ΔS respe	ctively are
	a) +,-	b) +,+	c) -,-	d) -,+
		PUBLIC	CONE MARKS	
10.	A process accom	panied by increase i	n entropy tends to be	
	a) isothermal	b) adiabatic	c) spontaneous	d) Non-spontaneous
11.	The entropy of v	apourisation of an id	leal liquid is equal to	
	a) 20 cal deg ⁻¹ m	ol ⁻¹	b) 25 cal deg ⁻¹ mo	ol ⁻¹
	c) 21 cal deg ⁻¹ m	ol-1	d) 30 cal deg ⁻¹ mo	pl^{-1}
12.	Which one of the	following is a state	function	
	a) q	b) Δq	c) w	d) ΔS
13.	The SI unit of en	tropy is		

	a) cal K ⁻¹ mol ⁻¹	b) erg cal mol ⁻¹	c) J deg ⁻¹ mol ⁻¹	d) J K ⁻¹ mol ⁻¹
14.	The network obtain	ned from a system is	given by	
	a) w - $P\Delta V$	b) w + P ΔV	c) $-w + P\Delta V$	d) -w - ΡΔV
15.	The maximum perc	centage efficiency po	ssible from an engine	e working between 127°C
	and 27°C			
	a) 25%	b) 100%	c) 78.7%	d) 67%
16.	The change of entre	opy for the process H	$I_2O(liq) \rightarrow H_2O(vap)$ inv	volving $\Delta H_{vap} = 40850 \text{ J}$
	mol-1 at 373 K			
	a) 120 J mol ⁻¹		b) 9.1 x 10 ⁻³ J mol ⁻¹	¹ K ⁻¹
	c) 109.52 J mol ⁻¹ K	-1	d) 9.1 x 10 ⁻⁴ J mol ⁻¹	¹ K ⁻¹
17.	The entropy change	e involved in the proc	cess of $H_2O(s) \rightarrow H_2O(s)$	O(1) at OoC and 1 atm
	pressure involving	Δ Hfusion = 6008 J mo	l ⁻¹ is	
	a) 22.007 J mol ⁻¹ K	-1	b) 22.007 J mol K ⁻¹	
	c) 220.07 J mol K ⁻¹		d) 2.2007 J mol K ⁻¹	
18.	Entropy (S) and the	e entropy change (ΔS) of a process	
	a) are path function	IS	b) are state function	ns
	c) are constants		d) have no values	
19.	$H_2O(1) \rightarrow H_2O(g)$. In	this process the entr	opy	
	a) remains constant	F 14901	b) decreases	
V	c) increases		d) becomes zero	
20.	Thermodynamics c	ondition for irreversi	ble spontaneous proc	cess ar constant T and P is
	a) $\Delta G < 0$		b) $\Delta S > 0$	
	c) $\Delta G > 0$		d) $\Delta H > 0$	
21.	Standard free energ	gies of formation of e	lements are taken as	
	a) Positive	b) Negative	c) Zero	d) All of these
22.	Free energy (G) an	d the Free energy cha	ange (ΔG) correspond	ds to the
	a) System only		b) Surrounding only	У
23	c) System and Surr	ounding	d) All of these	
23.	a) 41.84 EU	b) 4.184 EU	c) 418.4 EU	d) 4184 EU
24.	A process accompa	nied by increase in e	nergy tends to be	<i>u)</i> 1101 <u>2</u> 0
	a) isothermal	-	b) adiabatic	
• -	c) spontaneous		d) non-spontaneous	5
25.	The entropy change	e for the following pr	ΔF sp(β 13°C) is	1(Transition) as 2090 J mol ⁻¹
	a) 22.007 I mol ⁻¹ I	X^{-1} 1 more o	$r \operatorname{SH}(p, 13^{\circ}\text{C}) \operatorname{1S}$ c) 0.314 I mol ⁻¹ K ⁻¹	l.
	b) 7.307 J mol ⁻¹ K	-1	d) 109.52 J mol ⁻¹ K	- -1
	·		·	

- 26. For an isothermal process, the entropy change of the universe during a reversible process is
 - a) Zero b) More c) Less d) None
- 27. The change in entropy for a system and surroundings are -0.228 JK⁻¹ and +0.260 JK⁻¹ respectively. Then entropy change of the universe is

a) -0.0313 JK^{-1} c) $+0.877 \text{ JK}^{-1}$ b) $+0.0313 \text{ JK}^{-1}$ d) -0.877 JK^{-1}

1	2	3	4	5	6	7	8	9	10
В	D	b	а	a	a	c	b	С	С
11	12	13	14	15	16	17	18	19	20
с	d	d	а	a	c	a	b	C	a
21	22	23	24	25	26	27			
с	a	b	С	b	a	b			

<u>LESSON – 10</u>	
<u>CHEMICAL EQUILIBRIUM - II</u>	
BOOK BACK ONE MARKS	

01. State of chemical equilibrium is

a) Dynamic
b) stationary
d) both
02. If the equilibrium constants of the following reactions are 2A = B is K1 and B = 2A is K2 then.

b) $K_2 = 1/K_2$

d) $K_1 = 1/K_2^2$

d) Zero

b) less than K_c

- a) $K_1 = 2K_2$
- c) $K_1 = 1/K_2$

03. In the reversible reaction $2HI \longrightarrow H_2+I_2, K_p$ is

- a) Greater than K
- c) Equal to K_c
- 04. In the equilibrium N_2+3H_2 \longrightarrow 2NH₃ the maximum yield of ammonia will be obtained with the process having
 - a) Low pressure and high temperature
 - b) Low pressure and low temperature
 - c) High temperature and high pressure
 - d) High pressure and low temperature
- 05. For the homogeneous gas reaction at 600K

 $4NH_{3(g)}+5O_{2(g)}$ $4NO_{(g)}+ 6H_2O_{(g)}$ the equilibrium constant K_c has the unit a) (moldm⁻³)⁻² b) (moldm⁻³)

	c) $(moldm^{-3})^{10}$	d) (1	noldm ⁻³) ⁻⁹
06.	Two moles of ammonia gas are introduc	ed into	a previously evacuated 1.0 dm^3 vessel
	in which it partially dissociates at high to	empera	ture. At equilibrium 1.0 mole of
	ammonia remains. The equilibrium const	ant K _c	for the dissociation is
	a) $27/16$ (mole dm ⁻³) ²	b) 2'	$7/8 (mole dm^{-3})^2$
	c) $27/4$ (mole dm ⁻³) ²	d) N	one of these
07	An equilibrium reaction is endothermic	if K₁ ar	$d K_2$ are the equilibrium constants at T_1
07.	and T_2 temperatures respectively and if	Γ2 is or	eater then T_1 then
	a) K_1 is less then K_2	h) K	is greater than K ₂
	c) K_1 is equal than K_2	d) No	nne
	c_{1} c_{1} c_{2} c_{1} c_{2} c_{2	u) 110	
	PUBLIC ON	E MAR	KS
08.	In an equilibrium reaction , if Δng is pos	itive th	en
	a) Kc = Kp b) Kc < Kp	c) Kc	> Kp d) $Kc = 0$
09.	The fraction of total number of moles of	reacta	nts dissociated is called
	a) Dissociation equilibrium	b) De	gree of association
	c) Degree of dissociation	d) Dis	ssociation consatant
10.	The maximum yield of ammonia in Hab	er's pro	cess is nearly
\vee	a) 47% b) 73%	c) 279	% $(d) 37%$ $(d) (d) (d) (d) (d) (d) (d) (d) (d) (d)$
11.	The rate constant of the forward reaction	n and re	everse reaction are 8 x 10^{-5} and 2 x 10^{-4}
	respectively. Then Kc is		
	a) 0.004 b) 0.02	c) 0.2	d) 0.4
12.	In which of the following equilibrium K	p < Kc	
	a) $CO_{(g)} + H_2O_{(g)} - CO_{2(g)} + H_{2(g)}$	g)	b) $N_{2(g)} + O_{2(g)} - 2NO(g)$
	c) $H_{2(g)} + I_{2(g)} - 2HI(g)$		d) $N_{2(g)} + 3H_{2(g)} - 2NH_{3(g)}$
13.	For the equilibrium $2H_2O(g) + 2Cl_2(g) =$		$4HCl_{(g)} + O_{2(g)}$, Kp and Kc are related as
	a) $Kp = Kc$ b) $Kp > Kc$	c) Kp	< Kc d) Cannot be related
14.	In the equilibrium constant for the forma	ation of	a product is 25, the equilibrium constant
	for the decomposition of the same produ	ict is	
	a) 25 b) 1/25	c) 5	d) 625
15.	Which of the following gaseous equilibr	ia is fa	voured by increase in temperature ?
	a) $N_2O_{4(g)}$ \longrightarrow $2NO_{(g)}$:	$\Delta H = +59 \text{ KJ mol}^{-1}$
	b) $N_{2(g)} + 3H_{2(g)} - 2NH_{3(g)}$:	$\Delta H = -22 \text{ KJ mol}^{-1}$
	c) $2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)}$:	$\Delta H = -47 \text{ KJ mol}^{-1}$
	d) Both (a) and (b)		

16.	In the synthesis of NH_3 between N_2 and H_2 reaction the unit of Kp is				
	a) $lit^2 mol^{-2}$ b) atm^{-2} c) lit	atm ⁻¹	d) atm ⁻¹		
17.	Which one of the following has negative value	e for ∆ng			
	a) $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$ b) PC	$Cl_5(g)$	= PCl ₃ (g) + Cl ₂ (g)		
	c) $N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$ d) 2H	$H_2O(g) + 2Cl_2(g)$	$4HCl(g) + O_2(g)$		
18.	$H_{2(g)} + I_{2(g)} \longrightarrow 2HI_{(g)}$. The equilibrium c	onstant Kc for	this reaction is 16. Kp		
	value is				
	a) 1 / 16 b) 16 c) 4		d) 1		
19.	The optimum range of temperature used in con	ntact process fo	or the manufacture of SO ₃		
	is				
	a) 400°C to 450°C b) 18	800°C to 2700°C	C		
	c) 500°C to 550°C d) 35	50°C to 450°C			
20.	In Haber's process the yield of ammonia is gre	eater			
	a) at high pressure b) at	low pressure			
	c) at high temperature d) in	absence of cat	alyst		
21.	The equilibrium constant for the reaction $2A^{-1}$	- B is 2	$5 \text{ mol}^{-1} \text{ dm}^3 \text{ at } 900 \text{ K.}$		
	What is the equilibrium constant for the reacti	on B	2A in dm ⁻³ mol at the		
	same temperature ?	1			
	a) 25 b) 625 c) 0.	422	d) 0.4		
22. 🗸	Forward reaction takes place, when	DQLC	KLOL V 9 G		
	a) $Q < Kc$ b) $Q > Kc$ c) Q	= Kc	d) Kc = $1 / Q$		
23.	The equilibrium constant Kc for A 🔫 🗕 H	B is 2.5 x 10 ⁻² .	The rate constant of		
	forward reaction is 0.05 sec ⁻¹ . Therefore, the r	ate constant of	the reverse reaction is		
	a) $2 \sec^{-1}$ b) $0.2 \sec^{-1}$ c) 2	min ⁻¹	d) 0.2 min ⁻¹		
24.	In an equilibrium reaction, Q < Kc then				
	a) forward reaction is favoured				
	b) reverse reaction is favoured				
	c) both forward and reverse reactions are favo	ured			
	d) none of these				
25.	In the manufacture of ammonia by Haber's pro-	ocess, the maxi	mum yield of ammonia		
	will be obtained with the process having				
	a) low pressure and high temperature				
	b) low pressure and low temperature				
	d) high pressure and low temperature				
26	In the formation of HI from H_{a} and I_{a} $K_{B} = K_{a}$	c Anglis aqua	to		
20.	In the formation of the from π_2 and r_2 , $\kappa p = \kappa$				

b) 1

d) -2

- Presence of moisture in contact process 27.
 - a) Activates the catalyst
 - c) increases the catalyst
- b) deactivates the catalyst
- d) makes the catalyst porous
- 28. The maximum yield of SO₃ in contact process is

a)	97%	1	o)37%		c) 50%		d) 47%		
1	2	3	4	5	6	7	8	9	10
a	b	с	d	b	a	a	b	с	d
11	12	13	14	15	16	17	18	19	20
d	d	b	b	a	b	с	b	a	a
21	22	23	24	25	26	27	28		
c	a	a	a	d	c	b	a		

c) 0

LESSON - 11 **CHEMICAL KINETICS - II BOOK BACK ONE MARKS**

- Hydrolysis of an ester by dilute HCl is an example for 01.
 - a) Second order reaction
 - c) pseudo first order reaction d) first order reaction

The unit of zero rate constant is 02.

- a) litre mol⁻¹ sec⁻¹
- c) sec⁻¹

d) litre² sec⁻¹

b) mol litre⁻¹ sec⁻¹

b) zero order reaction

The excess energy which a molecule must posses to become active is known as 03.

- a) kinetic energy
- c) potential energy

Arrhenius equation is 04.

a) $k = Ae^{-1/RT}$ b) $k = Ae^{-RT/Ea}$

c) $k = Ae^{-Ea/RT}$

b) threshold energy

d) activation energy

d) $k = Ae^{Ea/RT}$

The term A in Arrhenius equation is called as 05.

- a) Probability factor b) Activation of energy
- c) Collision factor d) Frequency factor

The sum of the powers of the concentration terms that occur in the rate equation is 06. called

a) molecularity	b) order	c) rate	d) rate constant
-----------------	----------	---------	------------------

07. Reaction in which the reacting molecules react in more than one way yielding different set of products are called

a) consecutive reactions b) parallel reactions

	c) opposing reactio	ns	d) chain reactions				
08.	The half life period	l of a first order react	on is 10 minutes. Then its rate constant is				
	a) 6.93 x 10 ² min ⁻¹		b) 0.693 x 10 ⁻² min ⁻¹				
	c) 6.932 x 10 ⁻² min	-1	d) 69.3 x 10 ⁻¹ min ⁻¹				
09.	For a reaction aA-	→bB, the rate of react	ion is doubled when	the concentration of A is			
	increased by four ti	imes. The rate of read	ction is equal to				
	a) k [A] ^a	b) k [A] ^{1/2}	c) k [A] ^{1/a}	d) k [A]			
10.	$2N_2O_5 \rightarrow 4 NO_2 + 0$	O ₂ , $\frac{-d[N_2O_5]}{dt} = k_1[N_2O_5]$	$0_5], \frac{d[NO_2]}{dt} = k_2 [N_2O_5]$	and $\frac{d[O_2]}{dt} = k_3[N_2O_5]$, the			
	relation between k ₁	k_2 and k_3 is	ut .				
	a) 2k ₁ =4k ₂ =k ₃	b) k ₁ =k ₂ =k ₃	c) 2k ₁ =k ₂ =4k ₃	d) $2k_1 = k_2 = k_3$			
11.	For a reaction, $E_a = 0$	0 and k= 4.2×10^5 sec	c ⁻¹ at 300K, the value	of k at 310K will be			
	a) 4.2 x 10 ⁵ sec ⁻¹	b) 8.4 x 10 ⁵ sec ⁻¹	c) 7.4 x 10 ⁴ sec ⁻¹	d) unpredictable			
		PUBLIC ON	<u>E MARKS</u>				
12.	The first order rate	constant of a reaction	n is 0.0693 min ⁻¹ . Th	e time required for 75%			
	completion is			1			
575	a) 10 min	b) 1 min	c) 100 min	d) 50 min			
13.	50% of a first order	r reaction is complete	ed in 20 minutes. The	time required for 75%			
· · · · ·	completion is						
	a) 60 minutes	b) 10 minutes	c) 40 minutes	d) 80 minutes			
14.	Half life period of	a first order reaction	is 20 min. The time t	aken for the completion of			
	99.9% of the reacti	on 1s	2.50	1. 00			
	a) 200 min	b) 2000 min	c) 250 sec	d) 20 min			
15.	In a first order reac	tion the concentratio	n of the reactant 1s in	creased by 2 times. The			
	rate of the reaction	is increased by	1 \ 4 .*				
	a) 2 times		b) 4 times				
16	c) to times		d) 6 times	for			
10.	Decomposition of i	nitrogen pentoxide in	CCI4 is an example	ior			
	a) Second order rea	iction	b) Third order reac	b) Third order reaction			
17	c) Zero order reacti	ion	d) First order reaction	ion			
17.	The half life of a fi	rst order reaction is I	$1 \ge 0.002$ 10-3	-1			
	a) $6.93 \times 10^3 \text{ mm}^{-1}$		b) $0.693 \times 10^{-3} \text{ mm}$	-1			
10	c) $6.93 \times 10^{-3} \text{ min}^{-1}$		d) $69.3 \times 10^{-2} \text{ min}^{-1}$				
18.	If the activation en	ergy is high, then the	rate of the reaction i	s			
	a) high	b) moderate	c) low	d) Cannot be predicted			

d) lowering of activation energy

b)liquid in gas

d) solid in gas

d) None

19. The rate constant for a first order reaction is $1.54 \times 10^{-3} \text{ sec}^{-1}$. Its half life period is

a)	a) 540 seconds b) 450 seconds				c) 45 seconds		d) 54 seconds		
1	2	3	4	5	6	7	8	9	10
с	b	d	c	d	b	b	С	b	с
11	12	13	14	15	16	17	18	19	
a	a	c	a	a	D	d	a	b	

<u>LESSON – 12</u> <u>SURFACE CHEMISTRY</u> <u>BOOK BACK ONE MARKS</u>

01. The migration of colloidal particles under the influence of an electric field is known as

- a) electroosmosis b) electrolysis
- c) electrodialysis d) electrophoresis

02. Which one is the correct fctor that explains the increase rate of reaction by a catalyst? a) shape selectivity b) particle size

- c) increase of free energy
- 03. Fog is a colloidal solution of
 - a) gas in liquid

() c) gas in soild) 7

04. The phenomenon of Tynciall effect is not observed in

- a) emulsion b) colloidal solution
 - c) true solution

05. The Tyndall,s effect associated with colloidal particles is due to

- a) presence of charge b) scattering of light
- c) absorption of light d) reflection of light

06. In case of physical adsorption, there is desorption when

- a) temperature increases b) temperature decreases
- c) pressure increases d) concentration increases
- 07. Colloidal medicines are more effective because
 - a) they are clean
 - b) they are easy to prepare
 - c) they are soluble in water
 - d) they are easily assimilated and adsorbed

08. When an oil soluble dye is mixed with emulsion and emulsion remains colourless then, the emulsion is

http://www.trbtnpsc.com/2013/07/latest-12th-study-materials-2013.html

				1. ***
00	a) O/W	b) W/O	c) 0/0	d) W/W
09.	For selective hydro	ogenation of alkynes	into alkene the catal	lyst used is
	a) N1 at 250° C		c) Pd, partially in	activated by quinoline
10	b) Pt at 25° C	1.1.1.	d) Raney nickel	
10.	For chemisorption	s, which is wrong?		
	a) irreversible			
	b) it requires activ	vation energy	• • ·	
	c) it forms multin	nolecular layers on ac	dsorbate	
1 1	d) surface compo	unds are formed		
11.	An emulsion is a c	colloidal solution of	1 \ . 1' ' 1	
	a) two solids		b) two liquids	
10	c) two gases	11	d) one solid and o	
12.	Colloids are purifi	ed by		
	a) Precipitation		c) Dialysis	
	c) Coagulation		d) Intration	
		PUBLIC UI	<u>VE MARKS</u>	
13	The catal vet used t	for the decomposition	ofKCiOris	
13.	a) MnO2	b) Cla	$C V_2 Q_5$	
14.	A catalyst which e	enhances the speed of	the reaction is	
	a) Promoter		b) Negative cataly	yst
	c) Positive catalys	t	d) Catalytic poiso	n
15.	The auto catalyst i	used in the oxidation	of oxalic acid by aci	dified KMnO4 is
	a) K ₂ SO ₄	b) KMnO4	c) MnSO ₄	d) CO ₂
16.	The iron catalyst u	used in the Haber's pr	rocess is poisoned by	y
	a) Pt	b) H ₂	c) H ₂ S	d) As ₂ O ₃
17.	The emulsion used	l for stomach disorde	er is	
	a) Argyrol		b) Milk of magne	sia
	c) Colloidal gold		d) Colloidal antin	nony
18.	The emulsifying a	gent used in O/W em	ulsion is	
	a) Protein		b) Long chain alc	ohol
	c) Lampblack		d) Heavy metal sa	alts of fatty acids
19.	The principal emu	lsifying agents for W	/O emulsion	
	a) Proteins	b) Gums	c) Synthetic soaps	s d) Lam black
20.	An example for ge	el type colloid is		

	a) Paint	b) Curd	c) Cloud	d) Cork				
21.	For the decomposit	tion of hydrogen perc	oxide the positive cat	alyst is				
	a) Glycerol	b) MnO ₂	c) Pt	d) Alcohol				
22.	The negative and positive catalyst for the decomposition of hydrogen peroxide are							
	respectively							
	a) Pt and As ₂ O ₃		b) As ₂ O ₃ and MnO ₂					
	c) $C_3H_5(OH)_3$ and $C_3H_5(OH)_3$	Pt	d) Alcohol and Mn	O_2				
23.	Curd is a colloidal	solution of						
	a) Liquid in Liquid	l	b) Liquid and Solid					
	c) Solid and Liquid	1	d) Solid and Solid					
24.	Which one of the f	ollowing factors is fa	lse regarding catalys	t ?				
	a) Small quantity is	s enough						
	b) Initiate the react	ion						
	c) Remains unchan	iged in mass and cher	mical composition					
	d) Specific in its ac	ction						
25.	Smoke is a colloid	al solution of						
	a) gas in solid	b) solid in gas	c) gas in liquid	d) liquid in gas				
26.	Which type of coll	oid is a sol?						
	a) solid in liquid		b) liquid in solid					
V	c) solid in solid V		d) gas in solid	ALOL VOU				
27.	The platinum catal	yst used in the oxidat	tion of SO_2 by contac	et process is poisoned by				
	a) As ₂ O ₃	b) V ₂ O ₅	c) Fe_2O_3	d) CuCl ₂				
28.	Coconut charcoal h	nas a great capacity o	f the of gases					
	a) Adsorption		b) Absorption					
	c) Desorption		d) All of these					
29.	Emulsifying agent	is used for						
	a) Precipitation of	an emulsion	b) Coagulation of a	an emulsion				
	c) Stabilisation of a	an emulsion	d) none of these					
30.	The function of Fe	Cl ₃ in the conversion	of Fe(OH) ₃ precipita	ate into a colloid is				
	a) peptizing agent		b) emulsifying age	nt				
	c) reducing agent		d) precipitating age	ent				
31.	An example of lyo	philic colloid is						
	a) Sulphur in water	ſ	b) Phosphorus in w	vater				
	c) starch		d) All of these					
32.	The blue colour of	the sky is due to						
	a) Tyndall effect		b) Brownian move	ment				

	c) Electropl	d) Electro osmosis							
33.	Catalyst used in Deacon's method of ma				nufacture	of chlorin	e is		
	a) NO				b) CuCl ₂				
	c) Fe ₂ O ₃				d) Ni				
34.	Argyrol is								
	a) colloidal	silver			b) colloid	dal antimo	ony		
	c) colloidal	gold			d) milk o	of magnesi	ia		
35.	The oxidati	on of sodi	um sulpha	ate by air	is retorted	by			
	a) MnO ₂				b) H ₂ S				
	c) Alcohol				d) As ₂ O ₃				
36.	Medicine u	sed as an e	eye lotion	is					
	a) Silver so	1			b) Colloi	dal gold			
	c) Colloida	l antimony	1		d) Milk o	of magnes	ia		
37.	The rate of	decompos	ition of h	ydrogen p	peroxide d	ecreases i	n the pres	ence of	
	a) Platinum	ı t	o) iron		c) MnO ₂ d) glycerine				
38.	Silica gel is	utilized f	or the	of th	e number of gases				
	a) Adsorpti	on			b) Absorption				
	c) Desorpti	on		51	d) All of	these		$\overline{1}$	4
39.	Ruby glass	is a colloi	dal solutio	on of	20		21		
\bigvee	a) Solid-sol			210	b) Gel		QUI o	J V J U	
	c) Emulsion	1			d) Sol				
40.	Electrophon	resis is							
	a) a method	l of purific	ation of c	olloid	b) a kine	tic proper	ty of colle	oid	
	c) an electri	ical proper	rty of coll	oid	d) the mo	ovement o	of dispersion	on mediur	n
1	2	3	4	5	6	7	8	9	10
d	d	b	c	b	a	d	a	с	с
11	12	13	14	15	16	17	18	19	20
b	С	a	с	С	C	b	a	d	b
21	22	23	24	25	26	27	28	29	30
C 21		b	<u>b</u>	b 27	A	a 27	a	c	a
31	32	33	34	35	36	37	38	39	40
C	a	b	а	С	A	C	a	a	C

<u>LESSON – 13</u> <u>ELECTRO CHEMISTRY-I</u> <u>BOOK BACK ONE MARKS</u>

http://www.trbtnpsc.com/2013/07/latest-12th-study-materials-2013.html

01. The process in which chemical change occurs on passing electricity is termed as

	a) neutralization	c) electrolysis
	b) hydrolysis	d) ionization
02.	The laws of electrolysis were enunciated	l first by
	a) Dalton	c) Kekule
	b) Faraday	d) Avogadro
03.	When one coulomb of electricity is pass	ed through an electrolytic solution, the mass
	deposited on the electrode is equal to	
	a) equivalent weight	b) molecular weight
	c) electrochemical equivalent	d) one gram
04.	Faraday's laws of electrolysis are related	i to
	a) atomic number of the cation	
	b) atomic number of the anion	
	c) equivalent weight of the electrolyte	
	d) speed of the cation	
05.	The specific conductance of a 0.01 M sc	Solution of KCl is 0.0014 ohm ⁻¹ cm ⁻¹ at 25° C. its
	equivalent conductance is	
	a) 14 $ohm^{-1} cm^2 eq^{-1}$	b) $140 \text{ ohm}^{-1} \text{ cm}^2 \text{ eq}^{-1}$
\vee	c) 1.4 ohm ⁻¹ cm ² eq ⁻¹	(d) 0.14 ohm ⁻¹ cm ² eq ⁻¹ \circ \checkmark
06.	The equivalent conductivity of CH ₃ COC	DH at 25°C is 80ohm ⁻¹ cm ² eq ⁻¹
	and at infinite dilution 400 ohm 1 cm ² ec	f^{-1} . The degree of dissociation of CH ₃ COOH is
	a) 1 b) 0.2	c) 0.1 d) 0.3
07.	When sodium acetate is added to acetic	acid, the degree of ionization of acetic acid
	a) Increases	b) decreases
	c) does not change	d) becomes zero
08.	NH ₄ OH is a weak base because	
	a) it has low vapour pressure	c) it is completely ionized
	b) it is only partially ionized	d) it has low density
09.	Which one of the following formula rep	presents Ostwald, s dilution law for a binary
	electrolyte whose degree of dissociation	is α and concentration C?
	a) $K = \frac{(1-\alpha)C}{\alpha}$ b) $K = \frac{\alpha^2 C}{1-\alpha}$ c) $K = \frac{(1-\alpha)C}{1-\alpha}$	$\frac{-\alpha C}{\alpha^2}$ d) K = $\frac{\alpha^2 C}{(1-\alpha)C}$
10.	Ostwald,s dilution law is applicable in the	ne case of the solution of
	a) CH ₃ COOH b) NaCl	c) NaOH d) H ₂ SO ₄
11.	Which one of the following relationship	is correct?

	a) pH = $\frac{1}{[H^+]}$		b) $pH = log_{10}[H]$	[+]
	c) $\log_{10} pH = [H^+]$		d) pH = $\log_{10} \frac{1}{[H^4]}$	-1
12.	When 10 ⁻⁶ mole of	a monobasic stron	ig acid is dissolved in	one litre of solvent, the pH
	of the solution is		0	
	a) 6	b) 7	c) less than 6	d) more than 7
13.	When pH of a solu	tion is 2, the hydro	ogen ion concentration	in moles
	litre ⁻¹ is			
	a) 1 x 10 ⁻²	b) 1 x 10 ⁻²	c) 1 x 10 ⁻⁷	d) 1 x 10 ⁻⁴
14.	The pH of a solution	on containing 0.1 N	NaOH solution is	
	a) 1		c) 13	
	b)10 ⁻¹		d)10 ⁻¹³	
15.	A solution which is	s resistant to chang	ge of pH on addition o	f small amount of an acid or
	a base is known as			
	a) buffer solution		b) true solution	
	c) isohydric solutio	on	d) ideal solution	
16.	The hydrogen ion of	concentration of a	buffer solution consist	ting of a weak acid and its
	salt is given by			
	a) $[H^+] = K_a \frac{[Acid]}{[Salt]}$	7 Par	b) $[H^+] = K_a [Sa$	
V	c) $[H^+] - K$ [Acid]		$d) [H^+] = K [Sa]$	
. –	C = C = C = C = C = C = C = C = C = C =		\mathbf{u} $[\mathbf{II}] = \mathbf{K}_a$ [Aci	[d]
17.	Indicators used in a	icid-base titrations	are	
	a) strong organic a	acids		
	b) strong organic	oases		
	c) weak organic a	cids or weak organ	iic bases	
	d) non-electrolyte			
18.	For the titration be	tween oxalic acid a	and sodium hydroxide	, the indicator used is
	a) potassium perma	anganate	b) phenolphthal	lein
	c) litmus		d) methyl orang	e
		PUBLIC (ONE MARKS	
19.	The value of enthat	lpy of neutralization	on of strong acid by st	rong base is
	a) 57.32 kJ equiv ⁻¹		b) -57.32 kJ equiv	V ⁻¹
	c) -72.57 kJ equiv	1	d) -72.23 kJ equiv	V ⁻¹
20.	The indicator used	in the titration of a	ammonium hydroxide	with hydrochloric acid is
	a) Potassium perma	anganate	b) Methyl orange	

	a) Dhanalm	atholoin			d) Litmu	0			
21	tf 0.2 amma		anit 0 10	79 a of oo	d) Litmus				
21.	deposited b	y 600 cou	lombs?		pper in 50	minutes,	now much	n or coppe	a will be
	a) 19.78g	1	b) 1.978 g		c) 0.1978	3 g	d) 197.8	8 g	
22.	For the titra	ation betw	een HCl a	nd sodiur	n carbona	te the indi	cator used	l is	
	a) Potassiu	m perman	ganate		b) Pheno	lphthaleir	1		
	c) Litmus				d) Methy	l orange			
23.	The numbe	r of moles	of electro	ons requir	ed to discl	harge one	mole of A	1 ³⁺ is	
	a) 3	1	b) 1		c) 2		d) 4		
1	2	3	4	5	6	7	8	9	10
c	b	c	с	b	b	b	b	b	a
11	12	13	14	15	16	17	18	19	20
d	a	b	С	a	a	С	B	b	b
21	22	23							
c	b	a							
775		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u>le:</u> <u>hydrox</u> book ba	SSON – 16 Y deriva CK one n	<u>i</u> <u>ATIVES</u> MARKS	0		
\bigvee					as				
01.	Which has	the highes	t boiling j	point?					
	a) CH ₃ CH ₃		b) CH ₃ OH		c) C_2H_5C	ЭH	d) C ₃ H ₈	3	
02.	Which is so	oluble in F	$I_2O?$						
	a) Phenol		b) Alkane	s	c) Alcoh	ols	d) Alke	nes	
03.	Order of rea	activity of	alcohol to	owards so	dium met	al is			
	a) primary	< second	ary > terti	ary	c) primar	ry < secon	dary < ter	tiary	
	b) primary	> second	ary > terti	ary	d) prima	ry > secor	ndary < ter	rtiary	
04.	The boiling	point of e	ethyl alcol	hol should	d be less than that of				
	a) propane				b) formic acid				
	c) dimethyl	ether			d) None of the above				
05.	Ethyl alcoh	ol cannot	be used as	s a solven	t for CH ₃ N	Mgl becau	se		
	a) CH ₃ Mg	I reacts w	ith alcoho	l giving n	nethane				
	b) The read	ction betw	veen them	is explosi	ve in natu	re			
	c) CH ₃ Mg	I is conve	rted to C ₂]	H5MgI					
	d) Alcohol	is immici	ible with (CH ₃ MgI					
06.	When alcol	nols are co	onverted to	o alkyl ch	lorides by	thionyl cl	nloride in	the preser	nce of
	pyridine the	e intermed	liate form	ed is					

	a) sulphonium ion	h) chlorosulphonic acid
	a) supporting the	d) chlorosulphite
07	On exidation of an alcohol gives an ald	a) emotosulpine
07.	as that of alcohol. The alcohol is	enjue naving the same number of carbon atoms
	as that of alcohol. The alcohol is 1° alcohol	c) 3º alcohol
	a) 1 alcohol b) 2° alcohol	d) None
08	A compound that gives a positive indef	a) None
08.	A compound that gives a positive found	
	a) 1-pentanon	d) pontanal
00	The compound that reacts factors with I	u) pentanan
09.	a) buten 1 ol	h) buten 2 el
	a) 2 methyl propen 1el	d) 2 methyl proper 2 el
10	C) 2-memyr propan - 101	d) 2-methyr propan-2-or
10.	The formation constant of phenor is high	her than that of ethanol because
	a) phenoxide ion is buikier than ethoxid	ue
	b) phenoxide ion is stronger base than a	
	 c) phenoxide ion is stabilized through a d) sharestide ion is loss stable then still 	
11	d) phenoxide ion is less stable than ethe	
11.	a) HC≡CH	
12	p-nitrophenol is having lowernK, value	than phenol because
12.	a) phenol is more acidic than p-nitro ph	internol
	b) anion of p-nitrophenol is more stabil	ized by resonance than that of phenol
	c) degree of ionization of p-nitro pheno	b) is less than that of phenol
	d) anion of p-nitrophenol is less stable	than of phenol
13.	The reaction of Lucas reagent is fast with	th
	a) (CH ₃) ₃ COH	c) CH ₃ (CH ₂) ₂ OH
	b) (CH ₃) ₂ CHOH	d) CH ₃ CH ₂ OH
14.	When phenol is distilled with Zn dust it	gives
	a) benzaldehyde	c) toluene
	b) benzoic acid	d) benzene
15.	A compound that undergoes brominatio	n easily is
	a) benzoic acid	c) phenol
	b) benzene	d) toluene
16.	Isomerism exhibited by ethylene glycol	is

	a) position isomerism	b) chain isomerism		
	c) functional isomerism	d) both (a) and (c)		
17.	Ethylene diamine is converted to ethyle	ene glycol using		
	a) Na ₂ CO ₃ solution	b) nitrous acid		
	c) NaHCO ₃ (aqueous)	d) Baeyer's reagent		
18.	Ethylene glycol forms terylene with			
	a) adipic acid	b) phthalic anhydride		
	c) terephthalic acid	d) oxalic acid		
19.	1-propanol and 2-propanol can be best	distinghished by		
	a) oxidation with alkaline KMnO ₄ follow	owed by reaction with Fehling so	olution	
	b) oxidation with acidic dichromate for	llowed by reaction with Fehling	solution	
	c) oxidation by heating with copper for	llowed by reaction with Fehling	solution	
	d) oxidation with concentrated H ₂ SO ₄	followed by reaction with Fehlin	ig solution	
20.	Glycerol is used		1	
	a) as a sweetening agent			
	b) in the manufacture of good quality	soap		
	c) in the manufacture of nitro glycerin			
	d) all the above			
21	The alcohol obtained by the hydrolysis a) pentanol b) propanol	of oils and fats is c) glycerol d) glycol	Net	
22.	The number of secondary alcoholic gro	up in glycerol is		
	a) 1 b) 2	c) 3 d) 0		
23.	The active component of dynamite is			
	a) Keiselghur	b) Nitro glycerine		
	c) Nitro benzene	d) Trinitro toluene		
24.	The reaction of ethylene glycol with Pl	3 gives		
	a) ICH_2CH_2I b) $CH_2 = CH_2$	c) $CH_2 = CHI$ d) $ICH =$	CHI	
	PUBLIC O	NE MARKS		
25	Which of the following is used in the t	motion of asthma and what	a acuah?	
23.	a) Panzyl banzosta	b) Phonyl honzosto	g cough?	
	a) Banzyl acotata	d) Phonyl acatata		
26	Ovidation of algebra using hismuth ni	u) riidiyi acetate		
20.	a) Tartaric acid	h) Mesovalic acid		
	a) Tarrane acid	d) Glyceric acid		
	c) Oxalic actu	u) Oryceric aciu		

- 27. The characteristic odour of lower phenols is
 - a) Carbolic acid b) Fruity
 - c) Oil of bitter almonds d) Rotten fish
- 28. The number of primary alcoholic groups in glycerol is

a)	0	ł	o) 1		c) 2		d) 3		
1	2	3	4	5	6	7	8	9	10
с	с	b	b	a	с	a	В	d	С
11	12	13	14	15	16	17	18	19	20
d	b	а	d	с	с	b	C	с	d
21	22	23	24	25	26	27	28		
с	a	b	В	а	b	a	C		

<u>LESSON – 17</u> **ETHERS BOOK BACK ONE MARKS**

- The isomerism exhibited by C₂H₅OC₂H₅ and CH₃-O-CH(CH₃)₂ is 01.
 - a) Functional

d) chain c) position Which one of the following is simple ether? 02. a) $CH_3 - O - C_2H_5$ **b**) $C_2H_5 - O - CH_3$

- c) $C_2H_5 O C_2H_5$
- Diethyl ether can be decomposed with 03.
 - a) HI b) KMnO₄ d) H_2O
- Oxygen atom of ether is 04.

c) oxidizing

c) NaOH

d) $C_3H_7 - O - C_2H_5$

b) metamerism

- a) very active
- b) Replacable
- d) Comparatively inert
- According to Lewis concept of acids and bases, ethers are 05.
 - a) Neutral c) Basic
 - b) Acidic d) Amphoteric
- 06. Intermolecular hydrogen bonds are not present in
 - a) CH₃COOH c) CH₃CH₂OH
 - b) $C_2H_5OC_2H_5$ d) $C_2H_5NH_2$
- 07. When ethyl iodide is treated with dry silver oxide it forms a) Ethyl alcohol b) diethylether

	c) silver ethoxide	d) ethylmethyl ether
08.	Williamson's synthesis is an exam	pple of
	a) nucleophilic addition	b) electrophilic addition
	c) electrophilic substitution	d) Nucleophilic substitution reaction
09.	When ether is exposed to air for so	ometime an explosive substance produced is
	a) peroxide	c) TNT
	b) oxide	d) superoxide
10.	Ether is formed when alkylhalide	is treated with sodium alkoxide. This method is
	known as	
	a) Hoffmann reaction	b) Williamson's synthesis
	c) Wurtz synthesis	d) Kolbe's reaction
	PUBL	IC ONE MARKS
11.	Which one of the following is uns	ymmetrical ether?
	a) CH ₃ -O-CH ₃ b) CH ₃ -O-C ₂	H ₅ c) C_2H_5 -O- C_2H_5 d) C_6H_5 -O- C_6H_5
12.	Which of the following forms ethe	er when heated with con.sulphuric acid at 413 K?
\sum	a) Organic acid () b) Aldehyde	c) Alcohol d) Ketone
13.	Higher ethers can be prepared from	m lower members by the action of
	a) Con.H ₂ SO ₄ b) AgOH	c) NaOR d) Grignard reagent
14.	Ethers should never be evaporated	to dryness because
	a) they form explosive peroxide	b) they are volatile
	c) thery are inert	d) they are lighter than water
15.	Which one of the following ethers	s is used in perfumery?
	a) dimethylether	b) diethylether
	c) Ethyl methyl ether	d) methylphenyl ether
16.	Anisole on bromination gives	
	a) o and p-bromo anisole	b) m-bromo anisole
	c) p-bromo anisole only	d) 2,4,6-tribromo anisole
17.	The IUPAC name of phenatole is	
	a) Phenoxy ethane	b) ethoxy benzene
	c) ethyl phenyl ether	d) benzoxy ethane
18.	The compound mixed with ethano	I to serve as substitute for petrol is
	a) methoxy methane	b) ethoxy ethane
	c) methanol	d) ethanal

19.	When ether	rs are expo	osed to air	for a long	g time, the	y form			
	a) Peroxide	es			b) halide	S			
	c) oxides				d) superc	oxides			
20.	The isomer	ism exhib	ited by 1-	propanol a	and metho	oxy metha	ne is		
	a) chain				b) positio	on			
	c) function	al			d) metan	nerism			
21.	Diethyl eth	er behave:	s as						
	a) Lewis ac	cid			b) Lewis	base			
	c) neutral c	ompound			d) Brons	ted acid			
22.	The Zeisel?	's method	of detection	on and est	imation o	f alkoxy g	roup in al	kaloids in	volves
	the reaction	n of ether	with						
	a) HI				b)	Cl_2			
	c) PCl ₅				d)	AlCl ₃			
23.	The numbe	r of ether	isomers p	ossible for	r C ₄ H ₁₀ O	is			
	a) 7				b)	5			
	c) 4				d)	3			
24.	In the form	ation of o	xonium sa	lt when e	thereal ox	ygen react	ts with str	ong miner	al acid
	is called			51		51		5\ 57	4
\sum	a) electrona	ation			b) protor	nation	21		
\vee	c) deproton	ation			d) dehyd	ration	QUI o		
25.	How many	alcohol is	omers are	possible	for the for	rmula C ₄ H	I ₁₀ O		
	a) 4		b) 2		c) 3		d) 7		
26.	The solven	t used for	the Grign	ard reager	nt is				
	a) ethyl alc	ohol		-	b) diethy	lether			
	c) acetone				d) benzer	ne			
27.	When dieth	ylether re	acts with	chlorine in	n presence	e of sunlig	ht it gives	5	
	a) α-chloro	diethyl eth	ner		b) α, α '-	dichlorod	iethyl ethe	er	
	c) perchlor	o diethyl e	ether		d) both (a) and (b)			
28.	Strong min	eral acids	th	e ethereal	oxygen fo	orming ox	onium sal	ts	
	a) electrona	ate			b) protor	nate			
	c) deproton	ate			d) dehyd	rate			
29.	Which of the	ne followi	ng does no	ot form pe	roxide ea	sily ?			
	a) Diethyl e	ether			b) Ethylr	nethyl eth	er		
	c) Dimethy	l ether			d) Aniso	le			
1	2	3	4	5	6	7	8	9	10
b	c	a	d	c	b	b	d	a	В

www.Padasalai.Net

www.TrbTnpsc.com

11	12	13	14	15	16	17	18	19	20
b	с	d	а	d	a	b	b	а	c
21	22	23	24	25	26	27	28	29	
b	a	d	b	a	b	С	b	D	
			<u>CAI</u> BO	LESSC RBONYL (OK BACK	<u>DN - 18</u> COMPOUN CONE MAI	<u>NDS</u> RKS			
01.	The chain i	somer of 2	2-methyl p	oropanal i	S				
	a) 2-butano	one			b) butana	ıl			
	c) 2-methyl	l propanol			d) but-3-	ene-2-ol			
02.	Schiffs reag	gent gives	pink colo	ur with					
	a) acetone				b) acetale	dehyde			
	c) ethyl alco	ohol			d) methy	l acetate			
03.	Isopropyl a	lcohol vap	ours with	air over	silver cata	lyst at 520)K give		
	a) tert.buty	l alcohol			b) acetale	dehyde			
	c) acetone				d) 2-prop	oanol			
04.	Methyl keto	ones are u	sually cha	racterized	l by				Л
$\overline{\langle}$	a) the Fehli	ng's solut	ion	20	b) the ioc	loform tes	st		
\vee	c) the Schif	ff's test			d) the To	llen's rea	gent 0		9 G
05.	Which of th	ne followi	ng compo	unds is or	kidized to	give ethyl	methyl ke	etone?	
	a) 2-propan	ıol			b) 2-pent	anone			
	c) 1-butano	1			d) 2-buta	nol			
06.	Formaldehy	yde polym	erises to g	give					
	a) paraldeh	yde			b) paraformaldehyde				
	c) formalin				d) formic	e acid			
07.	Tollen's rea	agent is							
	a) ammonia	acal cupro	us chlorid	e	b) ammo	niacal cup	orous oxid	e	
	c) ammonia	acal silver	nitrate		d) ammo	niacal silv	ver chlorid	le	
08.	When aceta	aldehyde i	s heated w	vith Fehlin	ng's soluti	on, it give	es a precip	itate of	
	a) Cu ₂ O	1	o) CuO		c) CuO +	- Cu ₂ O	C	l) Cu	
09.	The compo	und that d	oes not ui	ndergo Ca	nnizzaro 1	reaction is			
	a) formalde	ehyde			b) acetale	dehyde			
	c) benzalde	hyde			d) trimet	hyl acetal	dehyde		
10.	The format	ion of cya	nohydrin	from a ke	tone is an	example			
	a) electroph	nilic additi	on		b) nucleo	philic add	lition		

	c) nucleophilic subs	stitution	d) electrophilic substitutio	n
11.	Hydrogenation of b	enzoyl chloride in th	e presence of Pd on BaSO ₄	gives
	a) phenol	b) benzoic acid	c) benzyl alcohol	d) benzaldehyde
12.	Form which of the	following, tertiary bu	tyl alcohol is obtained by th	ne action of methyl
	magnesium iodide?			
	a) HCHO	b) CH ₃ CHO	c) CH ₃ COCH ₃	d) CO ₂
13.	During reduction of	f aldehydes with hydr	razine and C ₂ H ₅ ONa the pro	oduct formed is
	a) $R - CH = N - NI$	H_2	b) RCN	
	c) RCONH ₂		d) R-CH ₃	
14.	Aldol obtained from	n acetaldehyde is		
	a) 2-hydroxy butane	ol	b) 3-hydroxy butanol	
	c) 3-hydroxy butana	al	d) 2-hydroxy butanal	
15.	In the reduction of a	acetaldehyde using I	LiAlH4 the hydride ion acts	as
	a) electrophile		b) nucleophile	
	c) both (a) and (b)		d) a free radical	
16.	Which of the follow	ving statement is wro	ng?	
	a) 2-pentanone and	l 3-pentanone are por	sition isomers	
	b) aqueous solution	n of formaldehyde is	known as formalin 📀	
$\left\langle \right\rangle$	c) aldehydes and k	etones undergo nucle	eophilic substitution	
\vee	d) aldehydes act as	reducing agents		
17.	A cyanohydrin of a	compound X on hyd	rolysis gives lactic acid. Th	ne X is
	a)HCHO		c) (CH ₃) ₂ CO	
	b) CH ₃ CHO		d) C ₆ H ₅ CH ₂ CHO	
18.	The IUPAC name of	of CH ₃ -C(CH ₃)=CH-	COCH ₃ is	
	a)4-methylpent-3-e	n-2-one	c) 3-methylpent-3-en-1-or	ne
	b) 2-methylpent-3-	en-2-one	d) none of these	
19.	Which of the follow	ving does not give io	doform test?	
	a) aceto phenone		b) benzophenone	
	c) CH ₃ CH(OH)CH ₃	3	d) CH ₃ CH(OH)CH ₂ CH ₂ C	H_3
20.	The compound whi	ch does not reduce F	ehling solution is	
	a) formaldehyde		b) acetaldehyde	
	c) benzaldehyde		d) propionaldehyde	
21.	CH ₃ COCH ₃ in the p	resence of con. H ₂ SC	D ₄ .The product is	
	a) mesitylene		b) mesityl oxide	
	c) phorone		d) paraldehyde	
22.	Which compound o	n strong oxidation gi	ves propionic acid?	

	a) CH ₃ CH(O	DH)CH ₃			b) CH ₃ –	CO – CH	[3		
	c) (CH ₃) ₃ C-	-OH			d) CH ₃ C	$CH_2 CH_2 CH_2$	ЭH		
23.	The compou	und used i	n the prep	paration o	f the tranq	uilizer, Su	ulphonal i	S	
	a) Acetone				b) acetop	henone			
	c) isopropyl	alcohol			d) glycol				
24.	Calcium ace	etate + cal	cium benz	zoate on c	distillation	it gives			
	a) benzophe	none			b) benzal	dehyde			
	c) acetopher	none			d) pheny	l benzoate	e		
25.	Bakelite is a	n product o	of reaction	n betweer	ı				
	a) formaldel	hyde and I	NaOH		b) phenol and methanal				
	c) aniline an	nd NaOH			d) pheno	l and chlo	roform		
			<u>PU</u>	BLIC ON	<u>E MARKS</u>				
26.	The compou	and that do	pes not an	iswer iodo	oform test				
	a) Acetophe	none			b) Isopro	pyl alcoh	ol		
	c) 2-pentance	ol			d) Benzo	phenone			
27.	The compou	and used i	n the prep	paration o	f tripheny	methane	dye is		Л
	a) Méthánol				b) pheny	l methano			
V	c) Phenyl m	ethanol			d) Ethano		9410		
28.	Propanone i	s usually	characteri	zed by					
	a) Fehling's	solution			b) Iodofo	orm test			
	c) Schiff's t	est			d) Tollen	i's reagen	t	1	
1	2	3	4	5	6	7	8	9	10
b	b	C	b	d	b	C	a	B	b
	12	13	14	15	16	17	18	19 D	20
	C 22	d	C	b 25	C 26	b 27	a	В	C
21		23	24	23 D	20 d	27 b	28 D		
a	U	a	C	D	u	D	D		
	-			LESSO)N – 19				
			<u>C</u>	ARBOXY	LIC ACID	<u>s</u>			
			<u>B00</u>	<u> OK BACK</u>	ONE MAI	<u>RKS</u>			
01	Which of th	e followir	ig is least	acidic					
	a) C_2H_2OH b) CH_2COOH c) C_2H_2OH d) C_1CH_2COOH								
02.	Weakest aci	d among t	the follow	ving is	-, -, -, -, -, -, -, -, -, -, -, -, -, -		<i>_,</i> 0101	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -	
52.	. weakest actualitoing the following is								

b) Phenol

a) Acetic acid

http://www.trbtnpsc.com/2013/07/latest-12th-study-materials-2013.html

c) Water

d) Acetylene

03.	Ester formation involves the reaction	of	
	a) an aldehyde and a ketone		
	b) An alcohol with RMgX		
	c) Two molecules of an acid with de	hydrating agent	
	d) An acyl halide with an alcohol		
04.	Heating a mixture of sodium acetate	and soda lime gives	
	a) methane	b) ethane	
	c) acetic acid	d) benzene	
05.	The acid which reduces Tollen's reag	gent is	
	a) acetic acid	b) benzoic acid	
	c) formic acid	d) oxalic acid	
06.	The IUPAC name of CH ₃ -CH ₂ -CH(CH ₃)-COOH is	
	a) α -methyl butyric acid	b) 3-methyl butan	oic acid
	c) 2-methyl butanoic acid	d) iso pentanoic a	cid
07.	The isomerism exhibited by CH ₃ CH ₂	COOH and CH ₃ COO	CH ₃ is
	a) metamerism	b) position	
	c) chain	d) functional	
08.	The acid that cannot be prepared by u	using Grignard reagent	tis o Traditional
	a) acetic acid	b) formic acid	
$\langle \rangle$	c) butyric acid	d) benzoic acid	GLOL VOC
09.	Which order of arrangement is correc	et in terms of the streng	gth of the acid
	a) $CH_3CH_2COOH > CH_3COOH < H_3COOH < H_3COOH > H_3CO$	$ICOOH < CICH_2COO$	Н
	b) $CICH_2COOH < HCOOH < CH_3C$	$COOH < CH_3CH_2COO$	H
	c) $CH_3CH_2COOH < CH_3COOH < H_3COOH < H_3CO$	$ICOOH < CICH_2COO$	Н
	d) $HCOOH > CH_3CH_2COOH < CH_3CH_3CH_3CH_2COOH < CH_3CH_3CH_2COOH < CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$	$_{3}COOH > ClCH_{2}COO$	Н
10.	The compound which does not under	go intermolecular Deb	ydration with P ₂ O ₅ is
	a) Acetic acid	b) formic acid	
	c)Propionic acid	d) butyric acid	
11.	HCOOH is heated at 160°C. The prod	luct formed is	
	a) $CO + H_2O$ b) HCOOH	c) $H_2 + CO_2$	d) HCHO + O_2
12.	When chlorine is passed through ace	tic acid in presence of	red P,It forms
	a) Acetyl chloride	b) trichloro acetal	dehyde
	c) trichloro acetic acid	d) methyl chloride	2
13.	Which of the following compounds w	vill react with NaHCO	3 solution to give sodium
	salt and CO_2 ?	.	
	a) acetic acid b) n-hexanol	c) phenol	d) both (a) and (c)

www.Padasalai.Net

イ

d) Acid anhydride > Ester > Amide > Acid chloride

В

a

a

1	2	3	4	5	6	7	8	9	10
a	d	d	a	С	c	d	В	c	b
11	12	13	14	15	16	17	18	19	20
С	С	a	d	d	b	c	A	d	В
21	22	23							

<u>LESSON – 20</u> ORGANIC NITROGEN COMPOUNDS BOOK BACK ONE MARKS

01.	Bromo ethane reacts with silver nitrite to	o give
	a) C ₂ H ₅ NO ₂	b) C2H5-O-NO
	c) C ₂ H ₅ Ag + NaBr	d) C_2H_5NC
02.	The isomerism exhibited by CH ₃ -CH ₂ -	NO ₂ and CH ₃ CH ₂ –O–N=O is
	a) position b) chain	c) functional d) tautomerism
03. V	In nitro alkanes $-NO_2$ group is converte	d to $-NH_2$ group by the reaction with
	a) Sn/HCl	b) Zn dust
	c) Zn/NH4Cl	d) Zn/NaOH
04.	When nitromethane is reduced with Zn c	lust + NH ₄ Cl in neutral medium, we get
	a) CH ₃ NH ₂	b) C ₂ H ₅ NH ₂
	c) CH ₃ NHOH	d) C ₂ H ₅ COOH
05.	The compound that is most reactive towa	ards electrophilic nitration is
	a) Toluene	b) benzene
	c) benzoic acid	d) nitrobenzene
06.	Nitromethane condenses with acetaldehy	vde to give
	a) nitro propane	b) 1-nitro-2-propanol
	c) 2-nitro-1-propanol	d) 3-nitro propanol
07.	Which of the following compounds has	the small of bitter almonds?
	a) aniline	b) nitro methane
	c) benzene sulphonic acid	d) nitrobenzene
08.	Nitration of nitrobenzene results in	
	a) o-dinitro benzene	b) 1,3,5-trinitro benzene

	c) p-dinitro benzene	d) m-dinitro benzene
09.	Nitrobenzene on electrolytic redu	action in conc. sulphuric acid, the intermediate formed
	is	
	a) C_6H_5 NH – NH C_6H_5	b) $C_6 H_5 - NHOH$
	c) $C_6H_5 - N = N - C_6H_5$	d) C ₆ H ₅ . HSO ₄
10.	Electrophile used in the nitration	of benzene is
	a) hydronium ion	b) sulphonic acid
	c) nitronium ion	d) bromide ion
11.	The reduction of $CH_3 - CH_2 - C$	\equiv N with sodium and alchol results
	In the formation of	
	a) CH ₃ -CH(NH ₂)-CH ₃	b) $CH_3CH_2CH_2 OH + N_2$
	c) CH ₃ CH ₂ CH ₂ NH ₂	d) CH ₃ CH ₂ NH ₂
12.	The basic character of amines is	due to the
	a) tetrahedral structure	
	b) presence of nitrogen atom	
	c) lone pair of electrons on nitro	gen atom
	d) high electronegativity of nitro	gen
13.	The organic compound that unde	rgoes carbylamines reaction is
	a) (C2H5)2NH	b) C2H5NH2
V	c) $(C_2H_5)_3N$ V V \sim 200 P	$\mathbf{d} (\mathbf{C}_{2}\mathbf{H}_{5})_{4}\mathbf{N}^{+}\mathbf{I}^{-} \mathbf{U} \mathbf{G} \mathbf{G} \mathbf{I} \mathbf{O} \mathbf{G} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{G} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{G} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$
14.	Primary amine acts as	
	a) Electrophile	b) Lewis base
	c) Lewis acid	d) Free radical
15.	Oxidation of aniline with acidifie	ed potassium dichromate gives
	a) p-benzo quinine	b) benzoic acid
	c) benzaldehyde	d) benzyl alcohol
16.	Which one of the following is a s	econdary amine?
	a) aniline	b) diphenyl amine
. –	c) sec.butylamine	d) tert.butylamine
17.	$C_6H_5NH_2$ is treated with NaNO ₂	/ HCl it forms X.ldentify X.
	a) C ₆ H ₅ Cl	b) C_6H_5NHOH
	c) $C_6H_5N_2Cl$	d) C_6H_5OH
18.	Which of the following will not u	indergo diazotization?
	a) m-toluidine	b) aniline
4.6	c) p-amino phenol	d) benzyl amine
19.	Aniline differs from ethylamine b	by the reaction with

	a) metallic sodium b) an	alkyl halide
	c) chloroform and caustic potash d)	nitrous acid
20.	When aqueous solution of benzene diaze	onium chloride is boiled the product formed is
	a) benzyl alcohol	b) benzene + N_2
	c) phenol	d) phenyl hydroxylamine
	PUBLIC ON	<u>E MARKS</u>
21.	Oil of mirbane is	
	a) methyl nitrite	b) m-dinitrobenzene
	c) m-nitro toluene	d) nitro benzene
22.	Which of the following reagent cannot b	e used for the conversation of nitrobenzene to
	aniline	
	a) Sn / HCl b) LiAlH ₄	c) H ₂ /Ni d) Zn / NaOH
23.	The reaction between a primary amine, o	chloroform and alcoholic KOH is known as
	a) Sandmeyer reaction	b) Hoffmann's reaction
	c) Wurtz reaction	d) Carbylamine reaction
24.	Chloropicrin is	
$\overline{\langle}$	a) CCl ₃ NOH () b) CCl ₃ N ₂ Cl	c) CCl ₃ NH ₂ d) CCl ₃ NO ₂
25.	Which of the following compounds is ca	Illed "Oil of mirbane"?
	a) $C_6H_5NO_2$ b) $C_2H_5NO_2$	c) $C_6H_5NH_2$ d) C_6H_5NO
26.	Which one of the following is a seconda	ry amine?
	a) aniline	b) diphenyl amine
	c) sec-butyl amine	d) tert-butyl amine
27.	When aniline is treated with sodium nitr	ite and HCl at 0°C it forms
	a) Chlorobenzene	b) Phenyl hydroxylamine
	c) Benzene diazonium chloride	d) Phenol
28.	Which of the following nitro compounds	s behave as an acid in the presence of strong
	alkali ?	
	a) Primary only	b) Secondary only
	c) Tertiatry only	d) Both (a) and (b)
29.	Conversion of benzene diazonium chlor	ide to chloro benzene is called
	a) Sandmeyer's reaction	b) Stephen's reaction
	c) Gomberg reaction	d) Schotten – Baumann reaction
30.	The compound that does not show tautor	merism is
	a) nitrobenzene b) nitromethane	c) nitroethane d) 2-nitropropane
31.	The nitrogen compound used in the prep	paration of sulpha drugs is

	a) methyl a	mine 1	b) nitrome	thane	c) amino	benzene	d) nitrol	benzene		
32.	The nitro group can be reduced to primary					ry amino group by				
	a) Sn / HCl	1	b) Zn dust		c) Zn / N	H ₄ Cl	d) Zn /]	NaOH		
33.	Aniline differs from ethylamine in its reaction with									
	a) CH ₃ I	H c)	HNO ₂	d) CH ₃ (COCI					
34.	Nitro-acinit	ру								
	a) nitromet	nane l	b) nitrober	nzene	c) chloro	picrin	d) o-tol	uidine		
35.	CCl ₃ NO ₂ is	used as								
	a) Soil sterilizing				b) organic synthesis					
	c) good solv	vent			d) antiox	idant				
36.	The reactio	n between	benzene	diazoniur	n chloride	and benze	ene in the	presence	of	
	NaOH is									
	a) Perkin's	reaction			b) Gatter	mann's re	action			
	c) Sandmey	ver reactio	n		d) Gomb	erg-Bachr	nann reac	tion		
37.	Use of chlo	ropicrin is	s as							
	a) Explosiv	e l	b) Dye		c) Anaes	thetic	d) Steril	lizing age	nt	
38.	Which of th	ne followi	ng will no	t undergo	Hoffman	n's broma	mide reac	tion?		
	a) Ethanam	ide 1	b) Propana	umide 🚽	c) Metha	namide	d) Phen	yl methan	amide	
39. The tertiary nitro compound is										
a) 2-nitropropane (1996) 1-nitropropane (1997) (1996)										
	c) 1-nitro-2,2-dimethyl propane d) 2-nitro-2-methyl propane									
40.	The interme	ediate for	ned in the	nitration	of benzen	e is				
	a) Arrhenium ion b) Carbanion c) Oxonium ion d) Nitrite ion									
41.	Aniline reacts with benzoyl chloride in the presence of sodium hydroxide and gives									
	benzanilide	. This rea	ction is kn	lown as						
	a) Gatterma	inn reactio	on		b) Sandmeyer's reaction					
	c) Schotten	-Baumanr	n reaction		d) Gomberg-Bachmann reaction					
42.	The produc	t obtained	when nit	robenzene	e is treated	with Zn /	NaOH is			
	a) aniline	1	b) azoxy b	enzene	c) azo benzene d) hydrazo benzene					
43.	Which one	of the foll	lowing is t	the most b	pasic?					
	a) ammonia	ı 1	b) methyla	amine	c) dimeth	nylamine	d) anilir	ne		
44.	Methyl isocyanide on reduction using LiAlH4 is									
	a) Methyl a	mine 1	b) Ethyl a	mine	c) Dimet	hyl amine	d) Trim	ethyl ami	ne	
1	2	3	4	5	6	7	8	9	10	
a	c	A	c	a	b	d	d	b	c	
11	12	13	14	15	16	17	18	19	20	

www.Padasalai.Net www.TrbTnpsc.com

					-	-	-	-	
c	с	В	b	a	b	c	d	d	С
21	22	23	24	25	26	27	28	29	30
d	d	d	d	а	b	с	d	a	a
31	32	33	34	35	36	37	38	39	40
с	а	С	а	а	d	d	с	d	a
41	42	43	44						
c	d	С	C						

<u>LESSON – 21</u> **BIOMOLECULES BOOK BACK ONE MARKS**

		LES <u>BION</u> BOOK BA	<u>SSON – 21</u> 10LECULES CK ONE MARKS							
01.	Which is a mono sa	ccharide among the f	ollowing?							
	a) Sucrose	b) Cellulose	c) Maltose	d) Glucose						
02.	Identify the reducin	ig sugar.								
	a) Sucrose	b) Cellulose	c) Starch	d) Glucose						
03.	Sucrose is not									
	a) a di saccharide									
	b) a non-reducing s	sugar								
	c) hydrolysed to o	only glucose	2 🔊 2 2							
\vee	d) hydrolysed to gl	lucose & fructose.	GYD GYLG							
04.	Sucrose contains gl	ucose and fructose lin	iked by							
	a) $C_1 - C_1$	b) $C_1 - C_2$	c) $C_1 - C_4$	d) $C_1 - C_6$						
05.	Glucose is not oxidized to gluconic acid by									
	a) Br ₂ /H ₂ O		b) Fehling solutions	8						
	c) Tollen's reagent		d) Conc. HNO ₃							
06.	Inversion of sucrose	e refers to								
	a) oxidation of suc	rose								
	b) reduction of suc	rose								
	c) hydrolysis of su	crose to glucose and f	fructose							
	d) polymerization	of sucrose								
07.	Glucose forms	with acetic anhy	dride and sodium ace	etate.						
	a) di acetate	b) tetra acetate	c) penta acetate	d) hexa acetate						
08.	The amino acid with	hout chiral carbon is								
	a) Glycine	b) Alanine	c) Proline	d) Thyrosine						
09.	The building block	of proteins are								
	a) α – hydroxy acid	S	b) α – amino	acids						

c) β – hydroxy acids d) β – amino acids Which is not true of amino acid? 10. a) amino acid forms Zwitter ion b) has isoelectric point c) dual behaviors d) amino acid is insoluble in NaOH solution 11. Two amino acids A,B- react to give a) two dipeptides b) three dipeptides c) four dipeptides d) only one 12. A di peptide does not have b) portion of two amino acids a) two peptide units c) an amido group d) salt like structure 13. Proteins are not sensitive to c) elevated temperature a) acids d) water b) bases 14. Denaturation does not involve a) breaking up of H- bonding in proteins b) the loss of biological action of enzyme c) the loss of secondary structure d) loss of primary structure of proteins Specificity of enzyme is due to 15. a) The sequence of amino acids b) secondary structure c) tertiary structure d) all of the above Ultimate products of hydrolysis of proteins is 16. a) aniline b) aliphatic acid c) amino acid d) aromatic acid 17. Proteins are a) polypeptides b) poly acids c) poly phenols d) poly esters 18. Which of the following contains a lipid? a) starch b) mineral oil c) edible oil d) peptide Which among the following contains triglyceride? 19.

	a) Wax		b) Cookii	ng oil				
	c) Essential oil		d) Album	d) Albumin				
20.	Which contains a long chain ester?							
	a) wax		b) cookin	goil				
	c) turpentine oil		d) cellulo	se				
21.	An example of a	a fatty acid obtained f	rom a cooking oil is					
	a) acetic acid	acid						
	c) benzoic acid		d) oxalic	acid				
22.	Which is not a saturated fatty acid?							
	a) Palmitic acid	·	b) Stearic	e acid				
	c) Oleic acid		d) Glycer	ic acid				
23.	Alkaline hydroly	sis of cooking oil giv	es					
	a) soap	b) glycerol c) fatty acid d)	both (a) and (b)				
24.	Hair and nail cor	ntains						
	a) cellulose	b) fat c) keratin d) lipid				
25.	Important consti	tuent of cell wall is	$\sim v$					
	a) lipid	b) cellulose c)	protein d)	vitamin				
26	Peptide bond is	PUBLIC (DNE MARKS	ai.Net				
	a) poly sacchari	des b) Protein	c) Lipids	d) Vitamins				
27.	Glucose reacts v	with acetic anhydride	in the presence of py	ridine to give				
	a) mono acetate	b) diacetate	c) penta acetate	d) no reaction				
28.	A mixture of D	+) glucose and D(-) f	ructose is known as					
	a) cane sugar	b) sweetless suga	ar c) invert sugar	d) starch sugar				
29.	Starch when hea	ated to 200-250°C cha	nges into					
	a) dextrin	b) glucose	c) Fructose	d) Cellulose				
30.	The precipitatio	n of proteins is known	n as					
	a) denaturation	b) renaturation	c) coagulation	d) peptisation				
31.	The protective a	agent on the surface of	f animals and plants	is				
	a) carbohydrates	s b) vitamin	c) nucleic acids	d) wax				
32.	Cephalins have	been implicated in the	e process of					
	a) metabolism		b) organization	b) organization of the body				
	c) blood purifica	ation	d) blood coagula	ation				
33.	The optically in	active amino acid is						
	a) glycine	b) Alanine	c) proline	d) thyrosine				

- 34. Sorbitol and Mannitol are
- a) isomers b) polymers c) epimers d) dimmers
- 35. _____ occur in white matter of the brain and of all nervous tissue
 - a) Lacithin
- b) Cephalin
- c) Galactolipids
- d) Aminoacid

1	2	3	4	5	6	7	8	9	10
d	d	c	В	d	c	c	a	b	d
11	12	13	14	15	16	17	18	19	20
a	a	d	A	d	c	a	С	b	a
21	22	23	24	25	26	27	28	29	30
b	c	d	C	b	b	c	c	a	a
31	32	33	34	35					
d	d	а	с	с					

ALL THE BEST