A 1.// 12/1/17

Sl. No.: 10000021

•			Γ.	TTA	11	И .	L 1
Register Number							

2017

AUTOMOBILE AND MECHANICAL ENGINEERING (Degree Standard)

Time Allowed: 3 Hoursl

[Maximum Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 10 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination it will not be replaced.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Invigilator to mark the answers.
- 6. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

 $A \bullet C D$

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination.

 After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 11. Do not tick-mark or mark the answers in the Question Booklet.
- 12. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

SPACE FOR ROUGH WORK

10000012

1.	The	vehicle moving on a level circular p	ath will ex	ert pressure such that	
	(A)	The reaction on the outer wheels	will be me	ore	•
	(25)	The reaction on the inner wheels	will be me	ore	•
	(C)	The reaction on the wheels are e	qual	•	
	(D)	The reaction depends upon the s	peed of wh	eel	
2.	_	a spring mass system, the frequenc		tion is 'N' what will be	the frequency whe
	one	more similar spring is added in ser	ies		
	(A)	<i>N</i> /2		$N/\sqrt{2}$	
	(C)	$\sqrt{2}/N$	(D)	2N	
				· · · · · · · · · · · · · · · · · · ·	
3.	Whi	rling speed of a shaft coincides with	the natur	al frequency of its	
	(A)	Longitudinal vibration		Transverse vibration	
	(C)	Torsional vibration	(D)	Coupled bending-tors	ional vibration
				•	
4.	Cond	luctivities of semi conductors range	from		<i>y</i> .
	· Com	10 ⁻⁹ to 10 ⁴ ohm ⁻¹ cm ⁻¹	(B)	10 ⁻⁸ to 10 ³ ohm ⁻¹ cm ⁻	1
	(C)	10 ⁻⁷ to 10 ⁴ ohm ⁻¹ cm ⁻¹	(D)	10 ⁻⁹ to 10 ³ ohm ⁻¹ cm	1
_					· .
5.	Velo	city factor is used to take care of		•	
	(A)	effect of high velocity		possibility of fatigue f	ailure
	(C)	possibility of high wear	(D)	pitting	
					*
6.	Sing	le plate clutch is used in			·
	The state of the s	four wheelers		. ·	
	(B)	two wheelers			
•	(C)	mopeds			
	(D)	applications where initial torque	is high		
	·			•	
7.	Shor	t shoe brakes have a angle of conta	et less the	n	
•	(A)	t shoe brakes have a angle of conta	(B)	 20°	
		60°	(D)	45°	
		· UU	(1)	**U	

		•		•	
8.	Slip	in the case of a centrifugal	oump		Auhippo.com
	(A)	Increases the flow rate		Reduces the energy tra	inefor
	(C)	Reduces the speed	(D)	Increases cavitation	morei
		- -			
9.	In fi	ally developed turbulent flow rictional drop will change by	w, if the diameter y the factor	r is halved without chan	ging the flow rate
	U.	32 times	(B)	16 times	
ı	(C)	8 times	(D)	4 times	
				•	
10.	In a	steady flow of incompressibl	le fluid, as the dia	ameter is doubled, the ve	elocity will
	(A)	be halved	(B)	be doubled	
	(C)	increase four fold		decrease four fold	•
11.	Whic	h one of the following is a v	alid potential fun	etion?	
	(A)	$\phi = clu x$	(B)	7 Page 1981	
	401	$\phi = 3xy$	(D)	$\phi = c (x^2 + y^2)$	
					•
12.	If a b	ody is in stable equilibrium	the metacentric	height should he	
	(A)	zero	(B)	positive	· •
	Jan Jan	negative		depends on the fluid	-
					•
13.	A ho	rizontal cylinder half fille tational forces are negligible	d with fuel is e. The free surfac	having an acceleration e of the liquid will be	of 10 m/s^2 . The
•	(A)	horizontal		•	
	(B)	slopes in the direction of a	cceleration		

14.

vertical

0.01 N/m is

10

(A)

(C)

slopes in the direction opposite of acceleration

The excess pressure in a droplet of 0.002 m diameter a fluid with surface tension of

(D)

 $0.00004~\pi$

15. The amount of energy added by heat transfer to the cycle to produce unit of network output is called

Heat rate

(B) Work ratio

(C) Back work ratio

- (D) Thermal efficiency
- 16. The value of dryness fraction at critical point for water-steam phase transformation may be
 - (A) 0

(B) 1

(C) either 0 (or) 1

- all of these
- 17. For a reversible engine cycle, the clausius inequality says,
 - $(A) \qquad \oint \frac{dQ}{T} > 0$

(B) $\oint \frac{dQ}{T} < 0$

 $\oint \frac{dQ}{T} = 0$

- (D) $\frac{dQ}{T} + du = 0$
- If carnot engine rejects heat at temperature of 400 K and accepts at 750 K. What shall be heat absorbed, if heat rejected is 1000 KJ
 - (A) 946 KJ

(B) 800 KJ

1875 KJ

- (D) 750 KJ
- 19. Latent heat of vaporization of water at critical point is
 - (A) 334 J/Kg

(B) 234 J/Kg

(C) 334 KJ/Kg

- Zero
- 20. In reference to Thermodynamic equilibrium, it is required to have,
 - (A) Mechanical Equilibrium
 - (B) Chemical Equilibrium
 - (C) Thermal Equilibrium
 - Mechanical, Chemical and Thermal Equilibrium

	(A)	Dens	sity				(B)	Coefficie	ent of visco	sity		
	(C)	Grav	ritation	al force			D	Velocity			,	•
22.									$h = 20 \mathrm{W}$	m²K), r	nàximun	n heat
	dissi	pation	occurs	when thi	ickness	of ins	ulation (I	K = 0.5 W/s	mK) is,			
	(A)	20 m	m		•		(D)	25 mm		•		
	(C)	28 m	ım				(D)	10 mm				
23 .	Mat	ch List	I with	List II ar	nd selec	t the c	orrect an	swer usin	g the code	s given l	below:	
,		List I	•				List II	•	•		,	
	(a)	Mome	entum 1	transfer		1.	Therma	al diffusiv	ity		;	,
	(b)	Mass	transfe	er		2.	Kinema	atie viscos	ity			
	(c)	Heat	transfe	r		3.	Diffusio	on co-effic	ient			
	-	(a)	(b)	(c)		•						
	-	2	3	1				•			•	
	(B)	1	3	2			-	•				
	(C)	3	2	1								
	(D)	1	2	. 3						•		
24.								_	at a tem		of 60°C	C. It is
	V	23.5	°C			•	(B)	30°C		•	•	
	(C)	35°C	3				(D)	40°C		·	•	
OF.	TT	J;	L.,1		_ 1::4.	_4	. •	- ,				
25.			•	ourizing i	2 milit	su W	(D)			• .		
	(A) 	0.05					(B)	0.1 mm	•	•		
		2 mi	n				(D)	5 mm	•			
AME	E/17					Auhi	6 ppo.com					. #

Free convection flow depends on all of the following EXCEPT

21.

26.	The slowest cooling rate is achieved when steel is quenched in									
	(A)	Fused salt	VP/	Air						
	(C)	Brine	(D)	Mixture of water						
. •				•						
27.		ch one of the following was naturents?	ot used for u	inderstanding the mechanics	of the hea					
	(A)	TTT diagrams	(B)	CCT diagrams	·					
	(C)	Hardenability curves		Phase diagrams	-					
	1		·							
28.	Heat	t treatment process to soften ha	rdened steel v	vas						
	(A)	Normalizing	(B)	Annealing						
•	100	Tempering	(D)	Spheroidizing	•					
		•								
29.	In w	hich of the process line defects v	were not form	ed						
	(A)	Solidification of metals	(B)	Recrystallisation of metals						
	(C)	Deformation of metals		Melting of metals						
30.	The	molten metal is poured from the	e pouring basi	n to the gate with the help of	а					
	(A)	Riser		Sprue						
	(C)	Runner	(D)	Core						
31.	In h	ot working of metals, the working	ng temperatu	e is						
	(A)	Below the recrystallisation te	mperature							
	0	Above the recrystallisation te	mperature							
	(C)	Equal to the melting point of	the metal		•					
	(D)	150°C								
			· .							
32.		xy-acetylene gas welding, for co ton of acetylene is	omplete comb	ustion, the volume of oxygen	required pe					
	(A)	1	(B)	1.5						
	(C)	2		2.5						
				•						

33.	Mat	ch the	List I wi	ith List l	I and c	hoose the co	orre	ect answer :	Auhippe
		List I		, .		List II			
	(a)	Seiko	1	- ,	1.	Orderline	ess		
	(b)	Seike	tso		2.	Clean up		· .	-
	(c)	Seiso			3.	Personal	clea	anliness	
	(d)	Seito	n		4 .	Proper ar		•	
	• •	(a)	(b)	(c)	(4)	•		3	
		,			(d)		·		
		4	3	.2	1				
	(B)	4	3	.1	2				
	(C)	3	4	2	1				•
	(D) .	1	3	2	4		ı		
	(-)	-		_	•				
			•						
34.	A lea	st acci	urate me	asuring	device	was ·			
	(A)	Air g	auge			(I	B)	Micrometer screw gauge	
	0	Steel	l rule			C	D)	Optical projector	·
		,							
35.	Grat	ings ar	e used i	n connec	tion wi	th			
	(A)			sureme			B)	Roundness measurement	
	(C)		ace textu			·		Linear displacement	
	. ,								
36.	Whic	h of th	e fallowi	ing meth	nda is t	ot concerns	ս հո	vith the surface finish meas	amomont?
	4			metry m			в В)	Ultrasonic method	,
	(C)	•		n metho			D)	Critical angle of attack me	ethod
		:				`	-,		
37.	A min		. ia 1100	1 to maa	a				-
, 1 .	A CH)		l to mea eter onl					
`	(B)		ide diam idness oi		y				
	(C) ·		•	•		oundness		, - .	

Only external threads

38.	Exte	nded Binary – coded de	ecimal interch	ange cod	le uses	-	. -
		8 – bit code		(B)	16 – bit code		•
•	(C)	$32 - \mathrm{bit} \; \mathrm{code}$		(D)	7 – bit code		
				•			
39 .	Loca	lizing an object in an ir	mage and sele	ctively a	nalyzing the ob	ect in a se	ries of redundant
	layer	rs is known as					
	(A)	Maxwell pyramid		(B)	Faraday pyrai	nid	
	C	Gaussian pyramid		(D)	Turning test	٠.	
			•		•		·
40.	CAE	and CAM are linked th	nrough				
	- Cup	A Common database	and communi	cation sy	/stem	•	
	(B)	NC tape programmin	g and automa	ted desi	gn.		
	(C)	Assembly automation	and tool prod	luction			:
	(D)	Parts production and	testing	-			
	•						
41.	Flexi	ble manufacturing allo	ws for				
	(A)	Automated design	•		•		
	(B)	Factory management	;				
	(C)	Tool design and tool p	production				· · · · · . · . · . · . · · . · · . · · · . ·
	0	Quick and inexpensiv	e product cha	nges			,
	_		•				·
42.	Calli	graphic is		-	. •		
	(A)	coloured image		(B)	coloured draw	ing	
	40	line drawing		(D)	dot matrix		
		•	•		•		
43.	In ro	botics, precision of mo	vement is a co	mplex is	ssue and it is de	escribed as	three attributes
	name	ely spatial resolution, r	epeatability a	nd	.		
	(A)	soundness	•	0	accuracy		
,	(C)	speed		(D)	sensation		٠.
=			, · A = 1	9 lippo.con			AME/17
			. Aun	uppo.con	u·		[Turn over

44.	In the production of a product, the fixed costs are Rs. 6,000 and the variable cost is Rs. 10 per product. If the sale price of the product is Rs. 12 the break even volume of the product to be made will be								
	(A)	2000		3000	· .	•			
	(C)	4000	(D)	6000					
4 5.		transportation problem, pasic feasible solution mus							
•	(A)	3		5					
	(C)	7 .	(D)	8		•			
46.	Fulk	erson's rule deals with							
	4	Numbering of events in	PERT/CPM mode	l	·				
	(B)	The simulation model			•				
	(C)	Queuing theory model			•				
	(D)	Transportation model							
				. •		•			
47 .	The	time which results in the	least nossible dire	et cost of an activ	ity is known	, 98			
T 11.	(A)	Normal time	coast possible and	Slow time	20, 10 2220 11 22	,			
•	(C)	Crash time	(D)						
	(0)	Oldon Millo	(15)						
48.	Posit	tive slack on a PERT indic	cates that project i	S	· .				
	4	ahead of schedule	(B)	beyond schedu	le	•			
	(C)	on critical path	(D)			,			
	` .	- -		<u>-</u>	•				
49 .		nning involves the select ng alternatives' was state		policies, procedu	res and pro	grammes from			
	(A)	Koontz and O' Donnell	(B)	Hodge					
	(C)	Alford and Betty		Hurley					
		•	<u> </u>						
50	Whi	ch one of the following ele	ment was not invo	lved in directing?	} }				
	(A)	Motivation	(B)	Leadership	•				
	(C)	Communication		Delegation					
						,			

5 .	Four	stroke petrol engines as compared to	o two st	troke petrol engines ha	Auhippo.com
		g and same compression ratio have			•
	(1)	Higher thermal efficiency			
	(B)	Higher specific fuel consumption		•	
	(C)	Higher specific output	· · · · · · · · · · · · · · · · · · ·		
	(D)	Higher torque		·	
52 .	In a f	four stroke I.C. Engine cam shaft rota	tes at	•	,
	(A)	Same speed as crank shaft		•	
	(B)	Twice the speed of crank shaft			
	400	Half the speed of crank shaft			
	(D)	1.5 times the speed of crank shaft			
		•		• .	• .
53.	In a	typical medium speed 4-stroke cycle d	iesel en	gine, the inlet valve	
	OCT	C – Top Dead Centre, BDC – Bottom I	ead Ce	ntre]	
	4	Opens at 20° before TDC and closes	at 35° &	after BDC	
	(B)	Opens at TDC and closes at BDC			
	(C)	Opens at 10° after TDC and closes a	at 20° be	efore BDC	·
	(D)	Remain open for 200°		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
54.	The	most perfect method of scavenging is			
	(A)	Cross scavenging	(2)	Uniflow scavenging	•
	(C)	Loop scavenging	(D)	Reverse flow scavenging	ng
	(0)	2007		•	
55 .	Mod	lern CRDI engines uses injection prese	sure of t	he order of	•
JJ.	(A)	400 bar	(B).	800 bar	
	(A) (C)	1000 bar		1600 bar	
	(0)	2000 802			

56.	sha	permits one shaft to drive t	wo other	Auhippo.c shafts with equal efforts at three diffe
	(A)	Universal joint	(B)	Stub axles
	0	Differential	(D)	Axle housing
		•	•	
57 .	The	parking brakes employed in vehicle	s are ope	rated
	(1)	Mechanically	(B)	Hydraulically
	(C)	Pneumatically	(D)	Electronically
	-			
58.	The	operation of removing trapped air fa	om the h	ydraulic braking system is known as
	(A)	Trapping	(B)	Tapping
•	(0)	Bleeding	(D)	Cleaning
			•	
59 .	Whic	ch of the following chassis layout is	fitted wit	h transfer case?
	(A)	Front engine – Front wheel drive	. •	
	(B) .	Rear engine – Rear wheel drive		
	40	Front engine – All wheel drive		
-	(D)	Front engine – Rear wheel drive		
		· •		
60.	The s	slots or openings in a disc wheel enh	ances	
	(A)	Vehicle body cooling	(B)	Passenger compartment cooling
-	.(C)	Engine – Radiator cooling	0	Brake system cooling
61.	Air b	rakes are mostly used in case of		
	(A)	Cars	(B)	Jeeps
	10	Trucks	(D)	Three-wheelers

	A	Increase the knocking tendency		•	
	(B)	Decrease the knocking tendency		•	
	(C)	Not affect the knocking tendency			
	(D)	Increase or decrease knocking tende	ency de	pending on strength	and time of spark
63.		ch of the following statement is not co Engines?	orrect v	vith respect to alcoho	ols as alternate fuels in
	(A)	Alcohols are corrosive in nature	•		
	(B)	Alcohol contains about half the heat	t energ	y of gasoline	
	VO)	Auto-knock characteristics of alcoho	ol is poo	or	
	(D)	Alcohol does not vaporize as easily a	as gaso	line	•
				· ·	•
		. *. · · · · · · · · · · · · ·			
64.	The t	thermostat in I.C. engines permitting	hot wa	ter to go to radiator	is set around
	(A)	70 – 80° C		80 – 85° C	
#E	(C)	85 – 95° C	(D)	Above 100° C	•
					• .
		·			
65 .		e are three types of Disc Brake			
	(A)	Fixed Caliper, Tab-Action and Two-			
		Fixed Caliper, Sliding Caliper and F		•	
	(C)	Floating Caliper, Swinging Caliper	and Pro	oportioning Caliper	•
	(D)	Fixed caliper, floating caliper and S	wingin	g caliper	
	1				
00	Б				
66.		pedal play in car clutches is about	(T)		
	(A)	3 mm	(B)	300 mm	
		30 mm	(D)	60 mm	
					,
	mL.	of of the state of			•
67.	ı ne (co-efficient of friction for the clutch fac	crus is	approximately	

In petrol engine, increase of cooling water temperature will

(D) 1.2

(A) 0.1

(C) 0.8

- 68. The torque transmitting capacity of fluid coupling [T] for a given slip varies with impeller internal diameter 'D' and its speed 'N' as
 - (A) $I \propto D^3 N^2$

(B) $I \propto D^3 N^3$

(C) $I \propto D^5 N^5$

- I∝D⁵N²
- 69. are welded to the rear wheel house panel, the floor panel and the rear of the rocker panel in a car.
 - (A) Rear doors

(B) Rear windows

Rear quarter panels

- (D) Trunk lid
- 70. Technician A says, the conventional body design will have more floor height, hence stability will be increased. Technician B says the weight of the frame is more, hence less vehicle speed. Out of these.
 - (A) A is correct
 - B is correct
 - (C) Both A and B are correct
 - (D) Neither A nor B are correct
- 71. Acute angles between backrest and seat squab results in
 - (A) Compressed thorax

- (B) Numness in arms
- Thigs press on the stomach
- (D) Numness in feet
- 72. Which one of the following is incorrect with respect to painting of vehicles?
 - Paints creates a thermal boundary layer on the surface
 - (B) Paints prevents rapid corrosion of parts
 - (C) Paint colour increases the ability to be seen
 - (D) Paint colour increases the aesthetic look

7 5.	In v	iscous damping, the damping force is –		the velocity of vibrating body.
	4	Proportional to	(B)	Inversely proportional to
	(C)	Square of	(D)	Cube of
74.	The	ratio of damping constant to the critica	ıl dam	ping constant is called as
	(A)	Logarithmic decrement	(D)	Damping ratio
:	(C)	Magnification factor	(D)	Transmissibility ratio
75 .	Con	sider the following degrees of freedom		
	(i)	Pitch		
	(ii)	Roll		
	(iii)	Xaw		
	The	DOF which is not included in half car	nodel i	is
	(A)	(i) and (ii)	(B)	(i) and (iii)
	0	(ii) and (iii)	(D)	(i), (ii), (iii)
76.		active spring component of actively boo		rol system influence the motion of vehicle's frequency.
	4	1 to 2 Hz	(B)	5 to 10 Hz
	(C)	20 to 30 Hz	(D)	50 to 100 Hz
77.	Tho	unit of understeer coefficient is		
7.1.	THE	Radian	(B)	MM/MM
	(C)	N/M	(D)	M
	. (0)	. 14122	(13)	
78.		ont engined, front wheel drive with a la		oportion of the vehicle weight on front tyres
	(A)	Reverse steer	(D)	Under steer
	(C)	Neutral steer	(D)	Over steer

79. What are the gain and natural frequency of the following system transfer functions

$$G(S) = \frac{36}{S^2 + 3S + 36}$$

(A) 36, 6

(B) 6, 6

1, 6

- (D) 6, 1
- 80. To implement the derivative term, we usually use a low-pass filter. The time constant of a low-pass filter should be
 - much smaller than the derivative time constant
 - (B) much smaller than the integral time constant
 - (C) much smaller than the system time constant
 - (D) much larger than the derivative time constant
- 81. A PID controller has a proportional band of 50%, the proportional gain is
 - (A) $K_p = 50$

(B) $K_p = PB/50$

(C) $K_p = 50 PB$

- $K_p = 100/PB$
- 82. Which of these descriptions is true of the step response of an over damped system?
 - it rises to a steady state value with no overshoot
 - (B) it rises to a steady state value with little overshoot
 - (C) it rises to a steady state value with large overshoot
 - (D) it does not settle to a steady state value
- 83. The short hand formula for calculating the closed loop transfer function for simple system is
 - forward / (1 + open loop)
- (B) forward * feed back / (1 + open loop) -

- (C) forward/(1 + forward)
- (D) loop / (1 + open loop)
- 84. The percentage overshoot of a second order system to a step input depends only on
 - (A) the value of the step input
- the value of the damping ratio

(C) the value of the gain

(D) natural frequency

85.	Thre	ee way catalytic converters reduce t	he emissio	on of	
	(A)	CO, CO2 and soot		CO, Nox and HC	
	(C)	CO_2 , $\mathrm{No}_{\mathbf{x}}$ and HC	(D)	CO, HC and soot	
36.	No.	emission is maximum in S.I. engine	s when th	e air fall ratio is	
	(A)	exactly stoichiometric	(B)	lean mixture	
	(C)	rich mixture	. (2)	nearby stoichiometric	
	(0)	Tien mixture	•	near by bloom one of the	
	•		•		
37 .	Effic	cient operation of catalytic converter	rs require	maintenance of	
	(A)	temperature and pressure			
	VO)	temperature and equivalence rati	io		
	(C)	pressure and equivalence ratio	v -		
	(D)	temperature		·	
			•		
38.	Rhod	dium in the catalytic convertor pron	notes the r	reduction of	
	(A)	HC			
	(B)	CO			
	(2)	No.			
	(D)	· Smoke	,		
	(1)	Billoac	•		
89.	The	three way catalytic converters, have	ing followi	ing combination of catalysis used,	
	40	Platinum, Palladium and Rhodiu	m	•	
	(B)	Platinum, Palladium and Nickel			
	(C)	Palladium, Rhodium and Nickel			
	(D)	Platinum, Rhodium and Nickel			

9 0.	A Ga mair	asoline engine running in a closed r	oom is da	angerous because the exha	aust gas contants
	(A)	Blue smoke	(B)	Water vapour	
		Carbon monoxide	(D)	Air .	· .
91.	Knoc	king takes place in C.I. Engines			
	(N)	at the start of combustion	(B)	at the end of combustion	
	(C)	during combustion	(D)	during the delay period	
92.	The j	purpose of preventive maintenance i	s to		
	(A)	help schedule breakdowns		.*	
^	(B)	eliminate routine service work			
	(C)	force the driver to use his own serv	vice stati	on	•
	0	help prevent failure			• •
93.	Servi	ice specifications are set by the			
	W/	Vehicle manufacturer		•	
	(B)	Technician			
¥	(C)	Service manager	-	•	
	(D)	Society of Automotive Engineers			·
94.	Most custo	shops discourage customers from	roaming	around the shop work ar	eas because the
	(A)	often want to help			
	(B)	may steal the data and shared it to	the com	petitor	
	40	could be in danger without reality	it	- • • • • • • • • •	•
	(D)	may find out they are paying for w	arranty v	work	

	ower window motor operates in one out tikely cause of this complaint?	lirection	but not the other d	Auhippo.co	
(A)	worn brushes		•	•	
(B)	defective permanent magnets	•		·	
(C)	loss of residual magnetism in the a	rmature			
91	defective power window switch	,			
The	e main purpose of the field coils in a D		•	٠.	
(A)	create a stationary magnetic field i	n the sta	itor	,	
0	create a magnetic field in the arma	ture			
(C)	create a CEMF				
(D)	reverse the polarity in the armatur	e windir	ig just as commutati	ion occurs.	
				·	
	e stator windings in an alternator ar asured between each of the three wind	lings is n	nearly 0 ohms. What		nce
4	The stator windings do not have an			•	
(B)		the stat	or trame		
(C)		_	•	-	
(D)	The stator windings are magnetize	ed			
. Aw	vaveform repeats itself 60 timés per se	econd. W		of the waveform?	
(A)	120 hertz	(B)	1 hertz		
C	60 hertz	(D)	3600 hertz	× .	
			٠.		
. Ar	ectifier diode bridge in an alternator i	s used to	•		
(A)	Convert DC into AC		•		
(B)	Regulate voltage output				
(C)	Bridge the gap between the stator	and the	rotor		
. (Dail	Convert or rectify the negative hal	lf of a gir	e wave into the posi	itive half of a sine w	/ave

- 100. If the ratio of the length of connecting rod to the crank radius increases
 - (A) primary unbalanced forces increase
 - (B) primary unbalanced forces decrease
 - (C) secondary unbalanced forces increase
 - secondary unbalanced forces decrease
- 101. The radius of gyration 'k' for a solid cylinder of radius 'R' is equal to
 - (A) $\sqrt{2} R$

(P) $R/\sqrt{2}$

(C) 0.6324 R

- (D) 0.5 R
- 102. A ball is thrown up. The sum of kinetic and potential energies will be maximum at
 - (A) the ground

(B) the highest point

(C) the centre

- all the points
- 103. The potential energy an elevator losses in coming down from the top of a building to stop at the ground floor is
 - (A) lost to the driving motors
 - (B) converted into heat
 - (C) lost in friction of the moving surfaces
 - used up in lifting the counter poise weight
- 104. The motion transmitted between the teeth of two spur gears in mesh is generally
 - (A) Sliding

(2) Rolling

(C) Rotary

- (D) Partly sliding and partly rolling
- 105. If a constant force 'F' acts on a body of mass 'm' for time 't' and changes its velocity from u to v under an acceleration of 'a' all in the same direction, then for equilibrium of the body
 - (A) $F = \frac{mu}{t}$

(B) $F = \frac{mv}{t}$

 $F = m \left(\frac{v - u}{t} \right)$

(D) $F = m \left(\frac{v+u}{t} \right)$

106.	Due to addition of extra full length leaves the deflection of a semi-elliptic spring								
•	(A)	increases	9	decreases					
	(C)	does not change	(D)	is doubled					
107.	Strai	in rosettes are generally used for							
107.			/D)	macayyamant of above atrain					
· ×	(A)	measurement of load	(B)	measurement of shear strain					
		measurement of longitudinal strain	(D)	measurement of resilience					
		•							
108.	Rive	ts are generally specified by							
	(A)	shape	(B)	diameter of head					
	(C)	overall length		shank diameter					
109.	A pro	opped cantilever is indeterminate exter	nally	to					
	مرس	The second degree	(B)	The third degree					
	(C)	The fourth degree	(D)	The fifth degree					
	• ,								
110. ⁻	Desig	gn of power transmission shafting is ba	sed or	1					
	4	Maximum shear stress theory of fail	ure						
	(B)	St.Venant theory							
	(C)	Rankine's theory		•					
	(D)	Heigh's theory							
111.	If +b	e radius of wire stretched by a load is d	loubled	I then its Young's modulus					
111.		will be doubled	(B)	will be halved					
	(A)	•	(D)						
	(C)	becomes four times		remains unaffected					
112.	One	kgf/cm ² when converted to SI units is	•						
	-	0.0981 MPa	(B)	0.98 MPa					
	(Ċ)	10 ⁴ Pa	(D)	1 Pa					

113.	Flow	v separation in flow past	a solid object is caus	ed by	
	(A)	a reduction of pressure	to vapour pressure		
	(B)	a negative pressure gra	adient		
	40	a positive pressure gra	dient		•
	(D)	the boundary layer this	ckness reducing to z	ero	
114.		is the distance measure r thickness varies as	d from the leading	edge of a flat plate, t	he laminar boundary
	(A)	$\frac{1}{x}$	(B)	x ^{4/5}	
	(C)	x^2		$x^{1/2}$	
					•
115.	_	omp handling a liquid ra d as 990 Kg/m ³ . The ise 0.10	_		
	(C)	2.50	(D)	2.93	
116.	Whie	ch of the following is not a Temperature Volume	a property of the sys (B)	tem? Pressure Heat	
	(0)	Volume	· · · · · · · · · · · · · · · · · · ·	neat	
117.		of a reversible heat pur fficiency shall be	np is 1.2. If it is rev	ersed to run as revers	sible heat engine ther
	(4)	0.833	(B)	0.2	
	(C)	1.2	(D)	0.5	·
					**
. 118.	The	change of entropy, when	heat is absorbed by	the gas is	
	W	positive	(B)	negative	
	(C)	positive or negative	(D)	zero	•
119.		each mole of oxygen, nur on are	nber of moles of nit	rogen required for co	mplete combustion o
	(A)	20/21	(B)	9/91	

(Ç)

77/21

79/21

120.	2000	•	i 1 m and 4 m and temperature 4000 K and statement is correct related to heat transfer		
	(A)	Greater than that of sphere 'B'	(B)	Less than that of sphere 'B'	
	400	Equal to that of sphere 'B'	(D)	Equal to double that of sphere 'B'	
121.	Form	ation of frost on evaporator in a ref	rigerator.		
	.(A)	increases heat transfer rate			
•		results in loss of heat due to poor	heat tran	sfer	
	(C)	is immaterial			
	(D)	decreases compressor power			
122.	In SI	unit, one ton of refrigeration is equ	al to		
	4	210 KJ/min	(B)	210 KJ/sec	
	(C)	3.5 KW/min	(D)	3.5 KW/hour	
123.	Whic	h is more viscous lub oil given belov	v?	•	
	(A)	SAE 30	(B)	SAE 40	
	(C)	SAE 70		SAE 80	
124.	The a		cle comp	ared to Diesel cycle for given compression	
	(A)	same	(B)	less	
		more	(D)	unpredictable	
125.		evaporators and condensers, for perature Difference (LMTD) for para		ven conditions, the Logarithmic Mean is	
	V.	Equal to that for counter flow			
	(B)	Greater than that for counter flow	•		
	(C)	Less than that for counter flow	٠		
	(D)	Very much smaller than that for o	ounter fl	ow	

126.	Whi	ich one	of the f	ollowing	materi	als, deformatio	n of crysta	als was not b	y twinnin ₍	ς ?
	(A)	Zine	e .			(B)	Tin			-
. '	(C)	Iron	1	-			Alumini	ium •		
127.	Ball	s for b	all bear	ings are	made of	f				
	(A)	Hig	h carbor	n.		(B)	Mild ste	el		
	(C)	Stai	i nl ess st	eel			Carbon-	chrome stee	1	
128.	Whi	ch of t	he follos	vino is a	conner	free alloy?		· .		
120.	(A)	Bra		THE IS &	соррст	(B)	Phoenho	or bronze		
	(C)	Inva				(D)	Muntz 1	•		
			^-			(2)	WIGHTED I	inctai		
129.	Iron	-carbo	n alloy o	ontainin	g 1.7 to	4.3% carbon is	called			
	(A)		ectoid ca		-	(B)		utectic cast	Iron	
	V	Нур	o-eutect	tic cast I	ron	(D)	Eutecto			· .
130.			List I not below.	alloys wi	ith List	II application	s and sele	ect the corre	ect answer	using the
		List l	[-	List II				
	(a)	Chro	mel	-	1.	Journal bear	ing			
-	(b)	Babb	it alloy		2.	Milling cutter	r			•
	(c)	Nimo	nic allo	у	3.	Thermo coup	le wire			
-	(d)	High	speed s	teels	4.	Gas turbine l	olade		٠,	
	_	(a)	(p)	(c)	(d)					
	(1)	3	1	4	2					
•	(B)	3	4	1	2			•	•	
	(C)	2	4	1	3				,	
	(D)	2	1	. 4	3		•		. •	

		J		Auhippo.com	n
131.	Hard	-zone cracking in low alloy steel due to	o weldi		
	(A)	N_2	(B)	O_2	
	(C)	H_2	(D)	C	
•					
132.	Cutti	ng power consumption in turning can	be sign	nificantly reduced by	
	(1)	increasing rake angle of the tool	Ĭ.		
	(B)	increasing the cutting angle of the to	ol		
	(C)	widening the nose radius of the tool	•		
	(D)	increasing the clearance angle			
133.	A grij	nding wheel of 150 mm diameter is ro	tating	at 3000 rpm. The grinding speed is	
1001	4	$7.5\pi\mathrm{m/s}$	(B)	$15\pi \mathrm{m/s}$	
	(C)	45π m/s	(D)	. 450π m/s	
	(0)	10% 1111			
134.				noval rate will be higher for materials with	l
	(A)	higher toughness	(B)	higher ductility	
		lower toughness	(D)	higher fracture strain	
				•	
135.	In Ele	ectro-Discharge machining, the work p	piece is	s connected to	
	(A)	Cathode	(1)	Anode	
	(C)	Earth	(D)	Electrolyte	
			.		
136.	Feed	drives in CNC milling machines are p	rovide	ed by	
	(A)	synchronous motors	(B)	induction motors	
	(C)	stepper motors		servo-motors	
137.	The r	ake angle in a drill			
•	(A)	increases from centre to periphery			
	(B)	decreases from centre to periphery			
	(C)	remains constant			
	O	is irrelevant to the drilling operation	ı		
		•			

139.	The call		es which	are onl	y used	for checking the	he size and condition	n of other	gauges	are
	(Á)	Plu	g gauge				Master gauge	,	•	
	(C)	Lim	it gauge	٠.	,	(D)	Inspection gauge			
140.	Stat	tistical	quality	control v	vas dev	eloped by			.,	
	(A)	Free	derick Ta	aylor		(2)	Walter Shewhart			
	(C)	Geo	rge Dant	zing		(D)	W.E. Deming			
141.	Mat	ch the	List I w	ith List l	II and s	elect the correc	t answer given below	:		
		List l	Ī			List II				
	(a)	Talys	surf		1.	T slots	. '			
	(b)	Teles	copic ga	uge	2.	Flatness				
	(c)	Tran	sfer calip	ers	3.	Internal dia				
	(d)	Auto	collimete	r	4.	Roughness	•		•	
		(a)	(b)	(c)	(d)					
	(A)	1	2	3	4					
	T)	4.	3	1	2					
	(C)	4	3	2	1					,
	(D)	3	4	1	2		•			
					•				•	
142.	Whi	ch of tl	ne follow	ing erroi	rs are n	ot controllable?			•	`
	(A)	Cali	beration	errors		(B)	Environmental erro	rs		
	(C)	Avoi	dable er	rors	٠	(D)	Random errors			

For general use the measuring tip of a comparator should be

Spherical

Grooved

(D)

138.

(A)

(C)

Flat

Conical

143.		hnique for displaying applications ior shell of a product is called	where co	Auhippo.com omplex 3-D geometric are required for the
	(A)	2-D modelling	(B)	Solid modelling
	(C)	3-D modelling	0	Surface modelling
		•	•	
144.	The r	esolution of electrostatic plotter is	expressed	in terms of
177.	(A)	number of lines per unit area	onprosecu.	
	(6)	number of dots per inch		
	(C)	ratio of darkened area to gross are	39	
	(D)	number of lines per inch		·
	(D)	number of thes per men		. •
145.		difference between CAD and CAM CAM software is	is that C	AD software is directed at product design
	· W	concerned with production and co	ntrol of to	ol design
	(B)	concerned with management prog	rams	
	(C)	specifically for PC board design		•
	(D)	designed for communications		•
			•	
146.	A Rol	bot is basically a		*
	(A)	machining device	(B)	inspection device
	100	material handler	(D)	machine tool
	V '.			•
				•
147.		tool required for work study is	(TI)	Doggan all ant
	(A)	Graph sheet	(B)	Process chart
	(C)	Planning chart		Stop watch
148.		ndividual human variability in tin a care of by	ne studies	s to determine the production standards is
	The second	personal allowances	(B)	work allowances
	(C)	error allowances	/-(D)	machine allowances
149.	Buffe	er stock + Reserve stock + Safety st	ock equal	s
	(A)	Order quantity	(B)	EOQ
	W.	Reorder point	(D)	Maximum inventory level
	- /	•	. ,	
←		·	97	AME/17

150.	Petr	ol engines are not suitable for p	art-load operation, bec	ause	Aumppo.com	11
		mechanical efficiency is poor			creased throttling	7
	(B)	of fear of pre-ignition	6		•	,
	(C)	of huge knocking		-		
	(D)	of increased detonation tende	ncy		*	
151.	A die	stributor in spark ignition engin	es performs the functi	ion of		
	(A)	distributing the right quantity			·	
	(B)	distributing the air requireme		cu cymnuei		١,
	(C)	adding additives to fuel oil	no appropriately			
		providing the correct firing or	der in the engine			
	•					
152.		e compression ratio of an engine ease in efficiency will be	working on Otto cycle	e is increased fr	om 5 to 7, the % o	of
	(A)	2%	8%			
	(C)	4%	(D) 14%		· -	
153.	In ai	r standard diesel cycle at fixed '	r' and fixed ' γ '	•		
	[r-c]	compression ratio, γ – specific h	eat ratio]			
	(A)	$(\eta_{ ext{thermal}})$ increases with increa	se in heat addition an	d cut-off ratio	·.	
	B	$(\eta_{ ext{thermal}})$ decréases with increa	se in heat addition an	d cut-off ratio	2.7	
	(C)	$(\eta_{ ext{thermal}})$ increases with increa	se in heat addition an	d decrease in cu	ıt off ratio	
	(D)	$(\eta_{ ext{thermal}})$ remain the same with	h increase in heat addi	ition and cut-of	f ratio	
						
154.	ratio	specific fuel consumption for a and then increases with furthe e range of,		·		
	(A)	chemical correct mixture			•	
		lean mixture			• .	
	(C)	rich mixture		•	•	
	(D)	unpredictable				
	(-)	<u>-</u>			٠.	٠.

[Turn over

155.	The	main function of the tread pattern	of the tyre	e is that
	(A)	Tread groove pass air between th from over-heating	e tyre and	d the road surface, there by preventing tyre
·	(B)	The crests between the tread gro	oves abso	rb noise
	0	The tread groove expels water th	at is draw	n between the tyre and road surface
	(D)	The tread pattern protects the t	yre's inne	er carcass from small stones and pieces o
		glass		
	\ \ .			
156.	The	tyre is designated as "175/65 R14 8	2S", then	the load index for the tyre is
	(A)	175	(B)	65
	(C)	14		~ 82
			•	
157.	The	object of air conditioning a car is to	control th	nese in the
	(A)	Temperature and Pressure	(B)	Pressure and Humidity
	VO	Humidity and Temperature	(D)	Humidity and Pressure
158.	The a	angle of inclination of the front whe	el tyre wi	th respect to the vertical plane is
	(A)	Caster	(B)	Camber
	(C)	Wheel track	(D)	Toe-out
		: 	-	
159.	pinio	permits the motion to be to n shaft of the differential, irrespect		ed from the gear box output shaft to the inclination of the drive shaft.
	(A)	Riveted joints		
	(B)	Welded joints		
	(C)	Slip joints		
	0	Universal joints	٠	
=		•	29	AME/17

Auhippo.com

160.	The energy stored per unit volume in coil spring as compared to leaf spring is								
	(A)	Equal amount	9	Double the amount					
	(C)	Four times higher	(D)	Six times higher					
161.	In hy	ydraulic Brakes "Bleeding" refers to							
	40	The process of removing air out from	the b	oraking system					
	(B)	The process of filling the brake fluid	in the	e brake cylinders					
	(C)	The leakage of brake fluid in the bra	ıke sys	stem					
	(D)	The process of emptying the brake fl	luid fro	om the brake system					
	•								
162.	The r	ratio of total load on the spring to the		•					
	(A)	Spring Tension	(B)	_					
	(C)	Spring efficiency		Spring rate					
					-				
163.	To pr	revent the automatic-level control syst	em fro	om reacting too quickly, the system in	cludes				
100.	(A)	a height control valve	VIII 110						
	(B)	an air compressor	•						
	(C)	an air dryer							
		a time-delay mechanism							
	\	·			*				
				•					
164.	In an	n electric air suspension system, the fo	llowin	ng components are used					
	U	Electric air compressor, a micro co	omput	ter control module, four air springs,	there				
		height semons and the air distributi	ion sec	ction					
	(B)	Four air spring only							
	(C)	Four coil spring only							
	(D)	Electric air compressor only							
A 7	3.44 E	·			-				

Auhippo.com

165.	The component of the torque convertor that allows multiplication of torque is the							
	(A)	Turbine	(B)	Impeller	·			
	(C)	Pump		Stator				
			٠					
16 6 .	Cush	nioning springs in clutch plate	are meant to re	educe				
	(A)	Torsional vibrations	(B)	Vehicle speed				
		Jerky starts	(D)	None of the above				
167.	The s	sliding dog clutch in the consta	ant mesh gear l	box is to transmit the power from the				
	(A)	Primary shaft to lay shaft						
	(B)	Lay shaft to output shaft						
	0	Primary shaft to output shaf	ft					
•	(D)	None of the above						
	1.12			•				
168.	In a	fully automated centrifugal cl	utch the reaction	on plate is installed in between				
	41)	The pressure plate and cove	r pressing					
	(B)	The pressure plate and fly w	heel	•	ē			
	(C)	The pressure plate and the	lriven plate					
	(D)	Cover processing and bob we	eight					
		•						
169.		simple epicyclic gear train for stationary	transmission o	of torque. The following component mu	ıst be			
	(A)	Sun gear	(B)	Annular gear				
	(C)	The carrier unit		Any one of the above				
		•						
170.	Auto	omatic transmission as compar	ed to manual t	ransmission are usually				
	(A)	More fuel efficient		Less fuel efficient				
	(C)	Equally efficient	(D)	None of the above				

	(A)	Panels	(B)	Mechanisms	V (1)
	40	Trims		·	
-		Trims	(D)	Firewall	
172.	Whi	ch of the following device is	s used to measure t	the airflow velocity in wind	tunnal testing?
	4	Anemometer	(B)	Altimeter	runner vesting:
	(C)	Barometer	(D)	Steam generator	
•	. ,			B	
				•	
173.	The	most commonly used supp	lementary restrain	t system is	
	(A)	Seat belt	(B)	Disc brakes	
	(0)	Air bags	(D)	Telescopic steering colum	n.
			•		
174.	Bum	per and other collision abs	orbing materials is	made up of	
	(A)	Light alloys of Brass	(B)	Light alloys of Copper	
•	90	Light alloys of Aluminiu	m (D)	Wood blocks	
			_		-
175.	Choo	se one feature that improv	es the forward visi	bility of a vehicle.	•
	(A)	Brake light	(B)	Hazard lights	
	(C)	Turn indicators		Cornering head light	
				•	
		•			
L76.	Whic	ch type of bus is more suite	d for the following	features?	
	Eņgi	ne in front of passenger co	mpartment		•
		ratio of useful length to ov			

Poor aerodynamic shape and high tare weight

Classic type bus

Doubleducker bus

Split level bus

Articulated bus

(B)

(C) (D)

177. In constant speed test, the vehicle is driven with

- (A) Constant speed at various steer angle
- (B) Constant speed at constant steer angle
- Constant speed at various turing radii
- (D) Constant speed at constant steer angle with constant radius

178. The coefficient of rolling resistance is defined as the ratio between

- (A) Rolling resistance to lateral load
- (B) Lateral load to rolling resistance
- Rolling resistance to normal load
- (D) Normal load to rolling resistance

179. Engine overheating may be due to

- (A) struck radiator pressure cap
- (B) open thermostat
- (C) excess coolant
- broken fan belt

180. Yaw velocity can be measured using

- (A) Proximity sensor
- (B) Speed sensor
- Gyro sensor
- (D) Torque sensor

181.	A reg	ulator problem is where the closed loop system must
	(A)	try to follow a series of set point changes
	9	remove any disturbances acting on the system
	(C)	respond very quickly
	(D)	respond very slowly
182.	Engi	ne knock can be measured by using
	(A)	Combustion pressure sensor (B) Mechanical vibration sensor
	·(C)	Ion current measurement All the above
183.	The l	nocking sensitivity of engines could be reduced by
	(A)	Compact combustion chamber geometry
	(B)	Central position of the spark plug
	(C)	Increased turbulence
	0	All the above
	`	
184.	Redu	cing the combustion-chamber surface area
	4	reduces the amount of unburned HC in the exhaust gas
	(B)	increases the amount of unburned HC in the exhaust gas
	(C)	reduces the amount of Nox in the exhaust gas
	(D)	increases the amount of unburned HC and Nox in the exhaust gas
185.	Redu	cing the compression ratio of an engine reduces the combustion temperature, and this
	(4)	reduces the amount of Nox formed
	(B)	increases the amount of Nox formed
	(C)	reduces the amount of HC formed
	(D)	increases the amount of H ₂ O formed
	'	

_		
186.	The	function of the air aspirator system is
	(A)	Furnishes the addition air for reduc

- e HC and Nox emission
- Furnishes the addition air for reduce HC and CO emission
- Furnishes the addition air for reduce HC and CO but increase of Nox (C)
- Furnishes the addition air for increase of HC and reduce CO and Nox (D)

Lead compounds were added in gasoline to 187.

- (A) reduce HC emissions
- reduce knocking
- reduce exhaust temperature (C)
- increase power output

Hydro carbon emission in CI Engine is mainly due to 188.

- (A) over mixing of fuel and air
- under mixing of fuel and air **(B)**
- constant mixing of fuel and air (C)
- both (A) and (B)

The automatic on-off and time delay head lamp control 189.

- turns the head lamps off as the driver gets out the car (A)
- times the flashing of the lights when the hazard system is energized **(B)**
- turns the head lamps off after a present time delay following the turning off of the engine
- turns the head lamps off 13 minutes after the driver leaves the car (D)

Blade in the hack saw cuts during the **190**.

Forward stroke

Backstroke **(B)**

Both stroke (C)

Pressure applied (D)

191.	INOX 6	emission in 51 engines w	m be lowest at	ırıng			
•	(A)	Acceleration		(B)	Deceleration		
	(C)	Cruising		(D)	Idling	-	
			•				
1 92 .	Тиго	controlling devices in th	na automatia t	40 to 4 to	incian analystad by	herduaulia muos	
152.		controlling devices in the onds and	ie automatic t	ransıı	ussion operated by	nyuraune pres	saure are
	(A)	pistons		(B)	gears		•
-	(C)	planetary gear sets			clutches		
				-			
1 9 3.	The a	alternator produces elect	ricity in its		,		•
	(A)	rotor field coil	,		stator windings		
	(C)	regulator		(D)	armature commut	ator	
			•	\			,
194.	The e	electronic spark control v	used on some to	urbo cl	harged engines		
	4	refer as the spark if de	tonation begin	8	* .	٠,	
	(B)	takes the place of mech	anical advanc	e mecl	nanisms	•	
	(C)	advances the spark to	suit operating	condit	ions		
	(D)	reduce spark voltage if	detonation be	gins			
						•	
•05	T_ 41_				•		
195.	In the	e starting motor, magnet	ism .				٠.
	(A)	rotate the armature an	d demeshes th	e pini	on	:	
	(B)	rotate the armature an	d meshes the	pinion			
	(C)	prevents high armatur	e speed as the	engine	starts		
	(D)	sends cracking force in	one direction	only			

196.	testing n	to determine bra nachine. The bra N; Rear Right.:	ke tester shov	vs the follo	owing reading	Front right	t : 2120 N	
	(A) 50	1 %		· (D)	60%	• •	•	
	(C) 70)%		(D)	80%			
	•				A.	•	•	
	-							
197.	The impo	ortant_requireme	nt of a catalyt	ic converto	or is			
	Hi	igh surface area a	and low volum	e heat cap	acity			
	(B) Lo	w surface area a	nd low volume	heat capa	acity			
	(C) Hi	igh surface area a	and high volum	ne heat ca	pacity		•	
	(D) Lo	w surface area a	nd high volum	e heat cap	acity			
			· ·		. ,		: .	•
•						•		
198.	A combin	nation of roll and	pitch is called	as				
	(A) Le	velling pitch		0	Diagonal pit	ch		
.		rundig pitch		(D)	Cushioning p	oitch		•
					* :			
			•					•
199.	In the Pa	assenger cars, the	following typ	e of carbu	retor is prefer	red		
-	(A) He	orizontal type				-		
	(B) U ₁	oward draught ty	ре					
	Do Do	ownward draugh	type					
	(D) In	clined draught ty	ре					
				:				
								. `
200.	Most con	nmonly used lubr	ication systen	in heavy	vehicles is the	•		•
		olash Lubrication						
		essure Lubricati	on system	•	· · .	· · · · · · · · · · · · · · · · · · ·		·.
		ravity Lubrication		•				

Petrol Lubrication system

(D)

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

: SPACE FOR ROUGH WORK

