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Mathematics Learning
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Applications of Matrices and Determinants

“The greatest mathematicians, as Archimedes, Newton, and Gauss,
always united theory and applications in equal measure.”
-Felix Klein

-
YEKeCBI

1.1 Introduction

Matrices are very important and indispensable in handling system
of linear equations which arise as mathematical models of real-world
problems. Mathematicians Gauss, Jordan, Cayley, and Hamilton have
developed the theory of matrices which has been used in investigating
solutions of systems of linear equations.

In this chapter, we present some applications of matrices in
solving system of linear equations. To be specific, we study four
methods, namely (i) Matrix inversion method, (ii) Cramer’s rule
¥ (iii) Gaussian elimination method, and (iv) Rank method. Before knowing

@ Carl Friedrich Gauss these methods, we introduce the following: (i) Inverse of a non-singular ®
(1777-1855) square matrix, (ii) Rank of a matrix, (iii) Elementary row and column

German mathematician and transformations, and (iv) Consistency of system of linear equations.
physicist

@ Learning Objectives

Upon completion of this chapter, students will be able to
e Demonstrate a few fundamental tools for solving systems of linear equations:
- Adjoint of a square matrix
- Inverse of a non-singular matrix
- Elementary row and column operations
- Row-echelon form
- Rank of a matrix

Use row operations to find the inverse of a non-singular matrix

e [llustrate the following techniques in solving system of linear equations by
- Matrix inversion method
- Cramer’s rule
- Gaussian elimination method

e Test the consistency of system of non-homogeneous linear equations

e Test for non-trivial solution of system of homogeneous linear equations

‘ ‘ Chapter 1 Matrices.indd 1 @ 31-01-2020 17:10:27‘ ‘
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1.2 Inverse of a Non-Singular Square Matrix

We recall that a square matrix is called a non-singular matrix if its determinant is not equal to
zero and a square matrix is called singular if its determinant is zero. We have already learnt about
multiplication of a matrix by a scalar, addition of two matrices, and multiplication of two matrices.
But a rule could not be formulated to perform division of a matrix by another matrix since a matrix is
just an arrangement of numbers and has no numerical value. When we say that, a matrix A is of order
n, we mean that A4 is a square matrix having » rows and n columns.

. 1 .
In the case of a real number x = 0,there exists a real number y(= —), called the inverse (or
X

reciprocal) of xsuch that xy = yx =1. In the same line of thinking, when a matrix 4 is given, we
search for a matrix B such that the products AB and BA can be found and 4B = BA =1, where [ is
a unit matrix.

In this section, we define the inverse of a non-singular square matrix and prove that a non-singular
square matrix has a unique inverse. We will also study some of the properties of inverse matrix. For
all these activities, we need a matrix called the adjoint of a square matrix.

1.2.1 Adjoint of a Square Matrix

We recall the properties of the cofactors of the elements of a square matrix. Let 4 be a square
matrix of by order n whose determinant is denoted |A| or det (A).Let a; be the element sitting at the
intersection of the i row and ;" column of 4. Deleting the " row and ;" column of 4, we obtain
a sub-matrix of order (n—1). The determinant of this sub-matrix is called minor of the element a,. It
is denoted by M. The product of M and (=)™ is called cofactor of the element a;. It is denoted
by 4. Thus the cofactor of a; is 4, =(-1)"' M.

An important property connecting the elements of a square matrix and their cofactors is that the
sum of the products of the entries (elements) of a row and the corresponding cofactors of the elements
of the same row is equal to the determinant of the matrix; and the sum of the products of the entries
(elements) of a row and the corresponding cofactors of the elements of any other row is equal to 0.
That is,

4| ifi=j
ailAj1+al.2Aj2+---+amAjn= 0 v

where |A| denotes the determinant of the square matrix A.Here |A| is read as “determinant of 4”

and not as “ modulus of 4”. Note that |A| is just a real number and it can also be negative. For

2 11
instance, we have |1 1 1{=2(1-2)-1(1-2)+1(2-2)=-2+1+0=-1.
2 21

| Definition 1.1
Let A be a square matrix of order n. Then the matrix of cofactors of A4 is defined as the matrix

obtained by replacing each element a; of 4 with the corresponding cofactor 4. The adjoint matrix

of A is defined as the transpose of the matrix of cofactors of A. It is denoted by adj 4.

XII - Mathematics 2
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Note
. . . . T - T
adj A1is a square matrix of ordern and adj 4 = [A,.j] = [(—1)’“ M i/] .

In particular, adj 4 of a square matrix of order 3 is given below:

T T
+M,, -M, +M;, Ay A, A 4y Ay Ay
adj 4= -M,, +M,, -M,| = A21 Azz Az3 = Alz Azz Asz .

+M3l _M32 +M33 A31 A32 A33 A13 A23 A33

Theorem 1.1
For every square matrix A of order n, A(adj 4) = (adj 4)4=|4|1,.

Proof
For simplicity, we prove the theorem for n = 3 only.
a, 4, d;
Consider 4=|a,, a,, a,, |- Then, we get

ay 4y Ay

ay Ay, +ap A, + a4, = |A s aydy +apdy, +ayd,; =0, a4y +a, Ay, a4, =0;

s Ay Ay +aydy, +ayds; =0,

ay A, tapd, +ayd; =0,  a, 4, +ayd, +ayd,; = |A

ay A, +apd, +a,4,=0, ayd, +ayAd,+a,4), =0, a4y +aydy +apdy, = |A|

By using the above equations, we get

a, a, a,l|[4, 4, A, 4 0 0 1 00

A@djd)= | ay, ay, ay || 4, Ay A, |=|0 |4 0 |=]|4]|0 1 0|=|41 (D)
a; Ay a33__A13 Ay Ay 0 0 |A| 0 0 1
4, Ay ABI__all a, aj |A| 0 0 1 00

(adjid)A=| 4, A, A, ||a, a, ay|=|0 |4 0 |=]40 1 0|=|45  ...(2)
Ay, Ay Ay lla, ay ag 0 0 |4 0 0 1

where [, is the identity matrix of order 3.
So, by equations (1) and (2), we get A(adj A) = (adj 4) A4 =|A|I,. |

Note
If 4 is a singular matrix of order n, then [4/=0 and so A(adjA) = (adj 4)4=0,, where O,

denotes zero matrix of order n.

Example 1.1

8 -6 2
If4=|-6 7 -4/, verify thatA(adj4)=(adjA)4 = |A4|1,.
2 -4 3
Solution
8 -6 2
We findthat |4| = |-6 7 —-4|=8(21-16)+6(-18+8)+2(24—-14)=40-60+20=0.
2 -4 3

3 Applications of Matrices and Determinants
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By the definition of adjoint, we get
T

(21-16) —(~18+8) (24-14) 5 10 10
adj A=| —(~18+8) (24-4) —(=32+12)| =|10 20 20|.
(24-14) —(=32+12) (56-36) 10 20 20

So, we get
8 -6 2[5 10 10

A(adj4) = |-6 7 —4|/10 20 20
|2 -4 310 20 20
[ 40-60+20 80-120+40 80-120+40 | [0 0 0
= |-30+70-40 —60+140-80 —60+140-80|={0 0 0 |=0I,=|4|I,,
| 10-40+30  20-80+60  20-80+60 | [0 0 0
Similarly, we get
5 10 10][8 -6 2
(adjA)4 = |10 20 20||-6 7 -4
10 20 20| 2 —4 3
40-60+20 -30+70-40 10-40+30] [0 0 O
= |80-120+40 —60+140—80 20-80+60|=|0 0 0|=0I,=|4|1,.
80-120+40 —60+140-80 20-80+60| |0 0 0
Hence, A(adjA) = (adj A)A=|A|I,. n

1.2.2 Definition of inverse matrix of a square matrix

Now, we define the inverse of a square matrix.
Definition 1.2

Let A be a square matrix of order n.If there exists a square matrix B of order # such that

AB = BA =1, then the matrix B is called an inverse of 4.

Theorem 1.2
If a square matrix has an inverse, then it is unique.

Proof
Let A be a square matrix order n such that an inverse of A4 exists. If possible, let there be two

inverses B and C of 4. Then, by definition, we have 4B=BA=1 and AC=CA=1,.

Using these equations, we get
C=CIl,=C(4B)=(CA)B=1,B=B.

Hence the uniqueness follows.

Notation The inverse of a matrix 4 is denoted by A~ n
Note

A7 =A4"4=1,.
XII - Mathematics 4

‘ ‘ Chapter 1 Matrices.indd 4 @ 31-01-2020 17:10:55‘ ‘



| YT T ] ® (. T

Theorem 1.3
Let 4 be square matrix of order n.Then, A~ exists if and only if 4 is non-singular.

Proof
Suppose that 4" exists. Then 44" =A4"'A=1.

By the product rule for determinants, we get
det(44™") = det(A)det(A ") = det(4™")det(4) = det(/,) =1.So,

A|=det(4) #0.

Hence A is non-singular.
Conversely, suppose that A4 is non-singular.
Then |4]= 0.By Theorem 1.1, we get

A(adj A) = (adj A)A=|4|1,.

, We getA(Ladj A]z(iadj A]A=In.

So, dividing by |A
4 4

Thus, we are able to find a matrix B = Ladj A such that AB=BA=1,.

4
Hence, the inverse of 4 exists and it is given by A4~ = %adj A.
|
Remark
The determinant of a singular matrix is 0 and so a singular matrix has no inverse.
Example 1.2
a b, . .,
If 4= is non-singular, find 4.
c d
Solution
_ 3 o [+M, M, [d ¢ [d -b
We first find adj A. By definition, we get adj 4 = = = .
-M,, +M,, -b a -c a
Since A is non-singular, |4|=ad —bc # 0.
-1 1 . -1 1 d _b
As A~ =—adj4, weget A = .
|A| ad—-bc|—-c a m
Example 1.3
2 -1 3
Find the inverse of the matrix | -5 3
-3 2 3
Solution
2 -1 3 2 -1 3
LetdA = |-5 3 1|. Then|A]=|-5 3 1|=2(7)+(-12)+3(-1)=-1=0.
-3 2 3 -3 2 3
Therefore, A~ exists. Now, we get
5 Applications of Matrices and Determinants
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31 -5 1 -5 3
23 -3 3 -3 2 ’
7 12 -1 7 9 -10
. -1 3 2 3 2 -1
adj4 = | — - =| 9 15 -1| =[12 15 -17
2 3 -3 3 -3 2
-10 -17 1 -1 -1 1
-1 3 2 3 2 -1
+ - +
(31 -5 1 =5 3]
| | 7 9 -10] [-7 -9 10
Hence, 4™ = 7(ade)=—1 12 15 -17|=|-12 =15 17].
4] D -1 -1 1 1 1 -1 m

1.2.3 Properties of inverses of matrices

We state and prove some theorems on non-singular matrices.

Theorem 1.4
If A is non-singular, then

(i) ‘A’l‘ :L| (ii) (AT )71 = (A’1 )T (iii) (/IA)*1 = %A‘l, where A is a non-zero scalar.

|4
Proof
Let A be non-singular. Then |A| =0 and A" exists. By definition,
AL =4 A=1 . (1)
(i) By (1), we get 44| =|a"4|=]1,|.

Using the product rule for determinants, we get |AHA‘1‘ =l |=1.
Hence, A*I‘ L

|4

(i1) From (1), we get (AA‘I)T = (A_IA)T = (In )T.

. N oo rf -\
Using the reversal law of transpose, we get (A ) A =4 (A ) =], .Hence

() (4.

(iii) Since A is a non-zero scalar, from (1), we get (AA)(% Alj = (% Alj(lA) =1,
a1
So.(24) ' =4 i

Theorem 1.5 (Left Cancellation Law)
Let A4,B, and C be square matrices of order n.If A is non-singular and 4B = AC,then B =C.

Proof
Since 4 is non-singular, 4" exists and A4 = A"'A=1,. Taking AB = AC and pre-multiplying

both sides by A4™', we get 4'(4B)=A"'(AC).By using the associative property of matrix
multiplication and property of inverse matrix, we get B =C. [

XII - Mathematics 6
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Theorem1.6 (Right Cancellation Law)
Let 4,B, and C be square matrices of order n.If 4 is non-singular and B4 = CA4,then B =C.

Proof
Since 4 is non-singular, 4 'exists and 44~ = A4 =1 . Taking BA= CAand post-multiplying
bothsidesby A", weget (BA)A™ = (CA)A™'. By using the associative property of matrix multiplication

and property of inverse matrix, we get B =C. u

Note
If 4 is singular and AB=AC or BA=CA,then Band Cneed not be equal. For instance,

consider the following matrices:

1 1 1 -1 0 -1
A= ,B= and C = )
5 ey e ]

We note that |A| =0and AB = AC; but B=C.

Theorem 1.7 (Reversal Law for Inverses)
If 4 and B are non-singular matrices of the same order, then the product 4B is also non-singular
and (4B)' =B'4"".

Proof

Assume that 4 and B are non-singular matrices of same order n. Then,| 4 |= 0, B| = 0, both
A™" and B' exist and they are of order n. The products 4B and B~' A" can be found and they are also
of order n. Using the product rule for determinants, we get |AB| =| A|| B |#0.So, 4B is non-singular

and
(ABY(B'A™")=(ABB™')A ' =(AI)A"' =447 =1 ;

(B A )(AB)= (B (4"'4)B=(B"'1)B=B"'B=1,.

|
Hence (AB) ' =B'4™".
Theorem 1.8 (Law of Double Inverse)
If 4 is non-singular, then 4~ is also non-singular and (47")™"' = 4.
Proof
Assume that 4 is non-singular. Then |A| #0, and A exists.
Now ‘A_l‘ = ﬁ #0=> A" is also non-singular, and 44~ = 4" A=1.
Now, Ad™" =1=(44") =1=(4") 4" =1. (1)
Post-multiplying by 4 on both sides of equation (1), we get (A’1 )71 = A.
|
7 Applications of Matrices and Determinants
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/ Theorem 1.9 N\

If A4 is a non-singular square matrix of order n, then

(i) (adj 4) " = adj(4")= 1y (i) |adj 4= 4]

4

(i) adj(adjd)= |4 4 (iv) adj(A4) = A""adj(4), A is a nonzero scalar

(n-1)’

(v) |adj(adjd)|=|4

L (vi) (adj 4)" =adj(4")

Proof
Since 4 is a non-singular square matrix, we have |A| = 0and so, we get

J

) A_l=j(ade):>ade = |A|A_1:>(ade)_1:(|A|A“)lzj(A—l)lzLA

Replacing A by 4™ in adj A=[d|4", we get adj(4™")=|47|(47) = 4.
Hence, we get (adj 4) ' =adj(4™")= ﬁA .

(i) A(adjA)=(adjA)4 = |A|I, = det(A(adjA4))=det((adj4)4)= det(|4]|1,)

= |A|jadj 4|= | A'= [adj 4= A"".
(iii) For any non-singular matrix B of ordern, we have B(adj B)=(adj B)B = |B|I,.
® Put B=adj 4. Then, we get (adj 4)(adj(adj 4)) = |adj 4|1,. ®

So, since [adj 4|=| A|"", we get (adj 4)(adj(adj 4))= [A|"" 1,
Pre-multiplying both sides by 4, we get A((adj 4)(adj (adj 4)))= A(j 4" 1,).

Using the associative property of matrix multiplication, we get

(4(adj 4))adj(adj 4)= A(| 4" 1,).

Hence, we get (|A

1,)(adj(adj 4))= |A["" A.Thatis,adj(adj 4)= | A|"” 4.

(iv) Replacing 4 by A4 in adj(4) = |A|A"1 where A is a non-zero scalar, we get

1

adj(A4) =|24|(14)" = 1" |4| IA-' ="

A 47 = 2" "adj(4).

(v) By (iii), we have adj(adj A) =| A" A. So, by taking determinant on both sides, we get

(n-1)?

|adj(adJA)| _ “ A |n—2 A‘ _ (l A |(n—2) )” A| = 4 |n2—2n+1= |A

(vi) Replacing Aby A" in 47" = iadj A, we get (AT )71 = | AlT |adj(AT) and hence, we

get adj(4")= |47 |(4") F4l(4") =(14]47) =(| A|jadj A]T = (adj 4)".

[ |
XII - Mathematics 8
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Note
If A is a non-singular matrix of order 3, then,| 4 |= 0. By theorem 1.9 (ii), we get ‘adj A‘ = A

and so, |ad] A| is positive. Then, we get |A| =+ |adj A|.

So, we get A~ =+ adj 4.

1
./\adj A\

Further, by property (iii), we get 4 = ﬁadj (adj A).
Hence, if 4 is a non-singular matrix of order 3, then we get A =+ ‘ ‘ adj(adj 4).
adj 4
Example 1.4
If A is a non-singular matrix of odd order, prove that |adj A| is positive.
Solution
Let 4 be a non-singular matrix of order 2m+1, where m =0,1,2,--- . Then, we get |A| =0 and,
by theorem 1.9 (ii), we have |adj 4|=| 4" A"
|
Since | A" is always positive, we get that |adj A| is positive.
Example 1.5
7 7 -7
Find a matrix 4 if adj(4)=|-1 11 7
11 5 7
Solution
7 7 -7
First, we find [adj(4)|=|-1 11 7 |=7(77-35)-7(-71-77)-7(-5-121) =1764 > 0.
15 7
So, we get
1 HT77-35) —(=7-77) +(=5-121]
A== adj(adj4) = + —(49+35) +(49+77) —-(35-77)
/|adj A| ( ) V1764
+(49+77) —(49-7) +(77+7)
42 84 -126] 1 2 3
=J_rL -84 126 42 | =+ 2 3 -1
42
126 —42 84 -3 1 2 u
Example 1.6
-1 2 2
Ifadjd=|1 1 2|, find A".
2 21
9 Applications of Matrices and Determinants
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Solution
-1 2 2
We compute |adJ A| 1 2/=9.
2 1
. | -1 2 2 . -1 2 2
So, we get 47 =+——adj(4) = i % 1 2 =J_r§ 1 1 2
[adiCA) 2 1 2 21 -
Examplel.7
If A4 is symmetric, prove that adj 4 is also symmetric.
Solution
Suppose A4 is symmetric. Then, A" = A and so, by theorem 1.9 (vi), we get
adj(AT ) =(adj A)T = adj 4 =(ad] A)T = adj 4 is symmetric. -

Theorem 1.10

If 4 and B are any two non-singular square matrices of order n, then

adj(AB) = (adj B)(adj 4).

Proof
Replacing 4 by AB in adj(4) = |A|A’1 , we get

adj(4B) = |AB|(4B)"' =(|B|B")(| 4| 4")=adj(B)adj(4). m

Example 1.8
) -1 N . 29
Verify the property (A ) :(A ) with 4 = ) .

7
Solution
. L 117 -9 5 5
For the given 4, we get |A| = 2)X7-9)(1)=14-9=5.So, 4 S e I,
55
71
AT 5 5 11 7 -1
Then, (A7') = =— . . (1
SR L 2 v
L 5 5
. T _2 1 T
For the given 4, We get 4" = | | So 47| =@ -m©) =5.
1 117 -1
Then, (4") = — . (2
=5 ) >

From (1) and (2), we get (A’1 )T = (AT )71. Thus, we have verified the given property.

XII - Mathematics 10
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Example 1.9
. -1 -1 ~1 . O _3 _2 _3
Verify (AB) =B A with 4= ,B= .
1 4 0 -1
Solution -
0 -3||-2 3 0+0 0+3 0 3
We get AB = = =
1 4]0 —-1| [-2+0 -3-4 -2 -7
. -7 -3 -7 -3
(aBy' = ! L ()
0+6)| 2 0 62 O
o L[4 3] 14 3
(0+3)|-1 0] 3{-1 O
PR -1 3 _1-1 03
2-0 0 2] 20 =2
-1 3 4 3] -7 -3
Bla= L ! 1 . )
210 -2y3|-1 0] 6[{2 O
As the matrices in (1) and (2) are same, (A4B)'=B'4™" 1s verified. [ ]

Example 1.10

4 3
If 4 :{2 5} find x and y such that 4° + x4+ yl, =0,. Hence, find A"

Solution

Since A4° =

A +xA+yl, =0, =

=

4 3[4 3] [22 27

2 5][2 5] [18 31’

(22 27] [4 3 1 0] [o 0
+Xx +y =

18 31] |2 5] 7|0 1) |0 O

[22+4x+y  27+3x | [0 0
1842x  31+5x+y| |0 O]

So, we get 22+4x+y=0,31+5x+y=0,27+3x=0 and 18+2x=0.

Hence x =-9 and y=14.Then, we get 4

2_94+141,=0,.

Post-multiplying this equation by 4™, we get 4—91/, +144™' = O,. Hence, we get

1

‘ ‘ Chapter 1 Matrices.indd 11
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1.2.4 Application of matrices to Geometry
There is a special type of non-singular matrices which are widely used in applications of matrices
to geometry. For simplicity, we consider two-dimensional analytical geometry.

Let O be the origin, and x'Ox and y'Oy be the x -axis and Y

y -axis. Let P be a point in the plane whose coordinates are (x, y)

with respect to the coordinate system. Suppose that we rotate the R 210

x -axis and y -axis about the origin, through an angle 6 as shown ¥
in the figure. Let X'OX and Y'OY be the new X -axis and new
Y -axis. Let (X,Y) be the new set of coordinates of P with

respect to the new coordinate system. Referring to Fig.1.1, '
we get

X = OL=ON—-LN =Xcos0—QT = XcosO—-Ysinf,

v = PL=PT+TL=0QON+PT =Xsin0O+Y cos0.

These equations provide transformation of one coordinate system into another coordinate system.
The above two equations can be written in the matrix form

x| [cos® —sin@][ X
y - | sinf cosO ||V '
[cos® —sinf]

Let W = | . Then
_sm@ cos@ i

X

Y

X 2 < 2
=W v and || =cos” 0 +sin” 6 =1.

cos@ sinf

So, W has inverse and W' :[ } We note that W' =W". Then, we get the

—sin@ cos@

inverse transformation by the equation

X\ = x| | cos@ sin@ || x| |xcosf—ysin6
Y| y | =sin® cos0 y - xsin6 + ycos6 |

Hence, we get the transformation X = xcos6 — ysinf, ¥ = xsin6 + ycos6 .

This transformation is used in Computer Graphics and determined by the matrix

{cos 6 —sinf

. . We note that the matrix W satisfies a special property W' =W"; that is,
sinf@ cos@

Wwh=w'w=1.

Definition 1.3

A square matrix A is called orthogonal if 44" = A" A=1.

Note
A is orthogonal if and only if 4 is non-singular and 4™ = A4".

XII - Mathematics 12
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Example 1.11

Prove that {

Solution
cosf® —sinf
Let A=| .
sin@ cosO
So, we get

AA4"

Similarly, we get A" A =

Example 1.12

6 -3 a
1

cos@® —sinf

sin@ cosO

} is orthogonal.

Then. A" [cos@ —sin@}T | cosO sine}
.Then, 4" = .

sin@ cos0O | —sin@ cos0

[cos® —sinHMcos@ sin @ |

sin@ cosO || —sin@ cosf

cos’ @ +sin’ 6

cos@sin@—sin@cos@} {1 O}
= 0 1 =1, .

_sin90059 —cosOsinf sin” 0 +cos’* 6

I,.Hence AA" = A"A=1,= A is orthogonal. u

If A:; b -2 6| isorthogonal, find a,b and c, and hence 4.

2 ¢ 3
O} Solution

If 4 is orthogonal, then

AA" = A" A =1,. So, we have

16 -3 al 6 b 2 1 0 0
AAT=I3:>;b—26;—3—20=010
2 ¢ 3 a 6 0 0 1
45+a° 6b+6+6a 12-3c+3a 1 00
= | 6b+6+6a b* +40 2b—-2c+18|= 49|10 1 O
12-3c+3a 2b—-2c+18 c*+13 0 0 1
45+ a* =49
b*+40=49
2 — 2:4 2: 2:
— C +13—49 — a 7b 9,C 36) :>a=2,b=—3,c=6
6b+6+6a=0 a+b=-l,a-c=-4,b—c=-9
12-3¢+3a=0
2b-2c¢+18=0
| 6 -3 2 . 6 -3 2
So, wegetA=; -3 -2 6| and hence, A‘1=AT=; -3 2 6].
2 6 3 2 6 3
|
13 Applications of Matrices and Determinants
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1.2.5 Application of matrices to Cryptography

One of the important applications of inverse of a non-singular square
matrix is in cryptography. Cryptography is an art of communication
between two people by keeping the information not known to others. It is
based upon two factors, namely encryption and decryption. Encryption
means the process of transformation of an information (plain form) into an
unreadable form (coded form). On the other hand, Decryption means the
transformation of the coded message back into original form. Encryption and decryption require a
secret technique which is known only to the sender and the receiver.

This secret is called a key. One way of generating a key is by using a non-singular matrix to
encrypt a message by the sender. The receiver decodes (decrypts) the message to retrieve the original
message by using the inverse of the matrix. The matrix used for encryption is called encryption
matrix (encoding matrix) and that used for decoding is called decryption matrix (decoding
matrix).

We explain the process of encryption and decryption by means of an example.

Suppose that the sender and receiver consider messages in alphabets 4 —Z only, both assign the
numbers 1-26 to the letters 4—Z respectively, and the number 0 to a blank space. For simplicity, the
sender employs a key as post-multiplication by a non-singular matrix of order 3 of his own choice.
The receiver uses post-multiplication by the inverse of the matrix which has been chosen by the
sender.

Let the encoding matrix be

1 -1 1
A=12 -1 0
1 0 O

8G571E

Let the message to be sent by the sender be “WELCOME”.

Since the key is taken as the operation of post-multiplication by a square matrix of order 3, the
message is cut into pieces (WEL), (COM), (E), each of length 3, and converted into a sequence of
row matrices of numbers:

[23 512],[3 1513],[5 0 0].

Note that, we have included two zeros in the last row matrix. The reason is to get a row matrix
with 5 as the first entry.

Next, we encode the message by post-multiplying each row matrix as given below:

Uncoded Encoding Coded
row matrix matrix row matrix
I -1 1
[23512]|2 -1 O =[45 -28 23];
1 0 0]
1 -1 1]
[3 1513] 2 -1 0| =[46 —18 3];
10 0
1 -1 1]
[500]|2 -1 0|=[5 -5 3].
0 0]
XII - Mathematics 14
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So the encoded message is [45 —28 23] [46 —18 3] [5 -5 5]

The receiver will decode the message by the reverse key, post-multiplying by the inverse of A.

So the decoding matrix is

0 0 1
Alziade: 0 -1 2.
A o

The receiver decodes the coded message as follows:
Coded Decoding Decoded

row matrix matrix row matrix
[0 0 1]

[45 -28 23] |0 -1 2| =[23 5 12];
1 -1 1]
0 0 1]

[46 —18 3]|0 -1 2| = [31513];
1 -1 1]
0 0 1]

[5 -5 5110 -1 2| =1[500]
1 -1 1

So, the sequence of decoded row matrices is [23 5 12],[3 15 13],[5 0 0].
Thus, the receiver reads the message as “WELCOME”.

EXERCISE 1.1
1. Find the adjoint of the following:

2 31 2 2 1
0 -3 4 @3 4 1| i N, 1 5
i il i) —|—
6 2 3
3 72 1 -2 2
2. Find the inverse (if it exists) of the following:
51 1 2 31
L |72 4 ..
(1) {1 3} @) (1 5 1| @i |3 4 1
1 1 5 37 2

cosa 0 sina
I F@)=| 0 1 0 |, showthat[F(a)] =F(-a).

—sinat 0 cosa

5 3
4. 1f A:[ | 2}, show that 4> ~34-71, =0, . Hence find 47".

-8 1 4
5. IfA:é 4 4 7|, provethat 4" =4".
1 -8 4

15 Applications of Matrices and Determinants
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10.

11.

12.

14.

15.

-t
-5

CIf A= 3 } , verify that A(adj 4) = (adj 4)4 = |A| I,.

3 2 -1 =3 . “l_ppl 41
If 4= and B = , verify that (4B) =B~ 4" .
75 5 2

2 -4 2]
CIf adj(4)=| -3 12 -7|, find 4.
2 0 2
0 -2 0]
If adj(4)=| 6 2 -6/, find 47"
-3 0 6
1 01
Find adj(adj(4)) if adjAd=| 0 2 0
-1 0 1

1 tan x s 1 |cos2x —sin2x
A= , showthat 4" 4" =| | .
—tan x 1 sin2x  cos2x

) ) ) 5 3 14 7
Find the matrix A4 for which 4 = .
-1 2 7 7

1 -1 3 2 1 1
. Given A=L }, B=[1 } and C={2 2}, find a matrix X such that 4AXB =C.

0 1
01 1

If A4=|1 0 1|, show that Alzé(Az—?al).
1 10

-1 -1
Decrypt the received encoded message [2  —3][20 4] with the encryption matrix[ ), }

and the decryption matrix as its inverse, where the system of codes are described by the
numbers 1-26 to the letters 4—Z respectively, and the number 0 to a blank space.

1.3 Elementary Transformations of a Matrix

A matrix can be transformed to another matrix by certain operations called elementary row
operations and elementary column operations.

1.3.1 Elementary row and column operations
Elementary row (column) operations on a matrix are as follows:

(1) The interchanging of any two rows (columns) of the matrix

(i) Replacing arow (column) of the matrix by a non-zero scalar multiple of the row (column) by a

non-zero scalar.

(ii1) Replacing a row (column) of the matrix by a sum of the row (column) with a non-zero scalar

multiple of another row (column) of the matrix.

XII - Mathematics 16
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Elementary row operations and elementary column operations on a matrix are known as
elementary transformations.
We use the following notations for elementary row transformations:
(i) Interchanging of i* and j"rows is denoted by R, <> R, .
(ii) The multiplication of each element of " row by a non-zero constant A4 is denoted by R, = AR,.

(iii) Addition to i"row, a non-zero constant A multiple of /" row is denoted by R, — R, + AR, .

Similar notations are used for elementary column transformations.

Definition 1.4
Two matrices 4 and B of same order are said to be equivalent to one another if one can be
obtained from the other by the applications of elementary transformations. Symbolically, we write

A ~ B to mean that the matrix A4 is equivalent to the matrix B .

1 -2 2
For instance, let us consider a matrix A={-1 1 3
1 -1 -4

After performing the elementary row operation R, — R, + R on 4, we get a matrix B in which

the second row is the sum of the second row in A4 and the first row in 4.

1 =2 2
Thus, we get A~ B=|{0 -1 5
1 -1 -4
The above elementary row transformation is also represented as follows:
1 2 2 1 -2 2
11 3 [R2RER Ly s
1 -1 -4 1 -1 4

Note
An elementary transformation transforms a given matrix into another matrix which need not be

equal to the given matrix.

1.3.2 Row-Echelon form

Using the row elementary operations, we can transform a given non-zero matrix to a simplified
form called a Row-echelon form. In a row-echelon form, we may have rows all of whose entries are
zero. Such rows are called zero rows. A non-zero row is one in which at least one of the entries is not

6 0 -1
zero. For instance, in the matrix [0 0 1 |, R, and R, are non-zero rows and R, is a Zero row.
0 0 O

Definition 1.5

A non-zero matrix E is said to be in a row-echelon form if:

(1) All zero rows of E occur below every non-zero row of E.

(ii) The first non-zero element in any row i of E occurs in the ;™ column of £, then all other
entries in the j® column of E below the first non-zero element of row i are zeros.

(iii) The first non-zero entry in the i row of E lies to the left of the first non-zero entry in
(i+1)" row of E.

17 Applications of Matrices and Determinants
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Note

A non-zero matrix is in a row-echelon form if all zero rows occur as bottom rows of the
matrix, and if the first non-zero element in any lower row occurs to the right of the first non-
zero entry in the higher row.

0 1 1 1 0 -1 2
The following matrices are in row-echelon form:(i) [0 0 3 {,(i1)) |0 0 2 8
0 0 0 0 0 0 6

Consider the matrix in (i). Go up row by row from the last row of the matrix. The third row is a
zero row. The first non-zero entry in the second row occurs in the third column and it lies to the right
of the first non-zero entry in the first row which occurs in the second column. So the matrix is in row-
echelon form.

Consider the matrix in (i1). Go up row by row from the last row of the matrix. All the rows are
non-zero rows. The first non-zero entry in the third row occurs in the fourth column and it occurs
to the right of the first non-zero entry in the second row which occurs in the third column. The first
non-zero entry in the second row occurs in the third column and it occurs to the right of the first
non-zero entry in the first row which occurs in the first column. So the matrix is in row-echelon form.

The following matrices are not in row-echelon form:

1 -2 0 03 -2
@lo o 5|, |5 0 o
0 1 0 32 0

Consider the matrix in (i). In this matrix, the first non-zero entry in the third row occurs in the
second column and it is on the left of the first non-zero entry in the second row which occurs in the
third column. So the matrix is not in row-echelon form.

Consider the matrix in (ii). In this matrix, the first non-zero entry in the second row occurs in the
first column and it is on the left of the first non-zero entry in the first row which occurs in the second
column. So the matrix is not in row-echelon form.

Method to reduce a matrix [aij]

m X

to a row-echelon form.
n

Step 1

Inspect the first row. If the first row is a zero row, then the row is interchanged with a non-zero
row below the first row. If a,, is not equal to 0, then go to step 2. Otherwise, interchange the first row
R, with any other row below the first row which has a non-zero element in the first column; if no row
below the first row has non-zero entry in the first column, then consider a,,.If a,, is not equal to 0,
then go to step 2. Otherwise, interchange the first row R, with any other row below the first row which
has a non-zero element in the second column; if no row below the first row has non-zero entry in the
second column, then consider ;5. Proceed in the same way till we get a non-zero entry in the first row.
This is called pivoting and the first non-zero element in the first row is called the pivot of the first row.
Step 2

Use the first row and elementary row operations to transform all elements under the pivot to
become zeros.
Step 3

Consider the next row as first row and perform steps 1 and 2 with the rows below this row only.
Repeat the step until all rows are exhausted.
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Example 1.13

3 -1 2
Reduce the matrix | -6 2 4| to a row-echelon form.
-3 1 2
Solution
3 -1 2] R -R+2R 3 -1 2 1 3 -1 2
R, AR, R—>R--R,
6 2 4|-B2RIR 5 o g 2" 50 0 8|
_—3 1 2 0O 0 4 0O 0 O u
Note
3 -1 2 3 -1 2
R,—>R./8 . . .
0 0 8 0 0 1| Thisis also a row-echelon form of the given matrix.
0 0 0 0 0 0

So, a row-echelon form of a matrix is not necessarily unique.

Example 1.14

0 316
Reduce the matrix | -1 0 2 5| to a row-echelon form.
4 200
Solution
0 316 -1025 -102 5
102522k 1o 31 6|B2RME 1o 31 6
4 200 4 200 0 28 20
R,—>R—gR, -10 2 5 -10 2 5
35031 6|22 0031 6
0 0 22 16 0 022 48
. 3] O

1.3.3 Rank of a Matrix

To define the rank of a matrix, we have to know about sub-matrices and minors of a matrix.
Let A be a given matrix. A matrix obtained by deleting some rows and some columns of 4 is
called a sub-matrix of 4. A matrix is a sub-matrix of itself because it is obtained by leaving zero

number of rows and zero number of columns.

Recall that the determinant of a square sub-matrix of a matrix is called a minor of the matrix.

Definition 1.6
The rank of a matrix 4 is defined as the order of a highest order non-vanishing minor of the

matrix 4. It is denoted by the symbol p(A4). The rank of a zero matrix is defined to be 0. |

19 Applications of Matrices and Determinants
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Note
(1) If a matrix contains at-least one non-zero element, then p(A4)>1.

(i1) The rank of the identity matrix /, is n.

(ii1) If the rank of a matrix 4 is r, then there exists at-least one minor of 4 of order » which does
not vanish and every minor of A of orderr+1 and higher order (if any) vanishes.
(iv) If Ais an mxn matrix, then p(A4) < min{m,n} = minimum of m,n.

(v) A square matrix 4 of order n has inverse if and only if p(A4)=n.

Example 1.15

3 25 4 3 1 =2
Find the rank of each of the following matrices: (i) |1 1 2| (i1)|-3 -1 -2 4
3 36 6 7 -1 2

Solution

3 5
(i) Let A=|1 2 |. Then A is a matrix of order 3x3.So p(4) <min{3,3} =3. The highest
3 6

W = N

order of minors of A is 3. There is only one third order minor of 4.

325
Itis |1 1 2|=3(6-6)-2(6-6)+53-3)=0.So, p(4)<3.
336

Next consider the second-order minors of 4.

We find that the second order minor

2
l‘=3—2=1;«r&O.So p(A)=2.

4 3 1 =2
(i) Let A=|—3 —1 =2 4 |.Then 4 is a matrix of order 3x4. So p(A4)<min{3,4}=3.
6 7 -1 2

The highest order of minors of A41is 3. We search for a non-zero third-order minor of 4. But
we find that all of them vanish. In fact, we have

4 3 1 4 3 =2 4 1 =2 301 =2
3 -1 -2|=0:;-3 -1 4|=0;-3 -2 4|=0;|-1 -2 4|=0.
6 7 -1 6 7 2 6 -1 2 7 -1 2

So, p(A4) <3. Next, we search for a non-zero second-order minor of 4.

We find that

v ‘:—4+9:5¢0. So, p(4)=2.
-3 -1 -
Remark

Finding the rank of a matrix by searching a highest order non-vanishing minor is quite tedious
when the order of the matrix is quite large. There is another easy method for finding the rank of a
matrix even if the order of the matrix is quite high. This method is by computing the rank of an
equivalent row-echelon form of the matrix. If a matrix is in row-echelon form, then all entries below
the leading diagonal (it is the line joining the positions of the diagonal elements a,,,a,,,a,;,---.of the
matrix) are zeros. So, checking whether a minor is zero or not, is quite simple.
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Example 1.16
Find the rank of the following matrices which are in row-echelon form :

2 0 -7 2 2 -1 60
1|0 3 1 i) |0 5 1 (ii1) 0 i
0 0 1 0 0 O
0 0
Solution
2 0 -7
(i) LetA=|0 3 1 |. Then A is a matrix of order 3x3 and p(4)<3
0 0 1
2 0 -7
The third order minor [4=[0 3 1 [=(2)(3)1)=6=0. So, p(4)=3.
0 0 1
Note that there are three non-zero rows.
-2 2 -1
(i) Let A= 0 5 1 |.Then A4 is amatrix of order 3x3 and p(A4)<3.
0 0 O
-2 2 -1
The only third order minor is |A|= 0 5 1[=2)5)0)=0.So p(A4)<2.
0 0 O

There are several second order minors. We find that there is a second order minor, for

example,

i‘:(—Z)(S)z—IO;ﬁO. So, p(4)=2.

Note that there are two non-zero rows. The third row is a zero row.

6 0 -9
0 . .
(111) Let 4= 0 0 . Then A is a matrix of order 4x3 and p(4)<3.
0 0 O

The last two rows are zero rows. There are several second order minors. We find that there

0
is a second order minor, for example, 5 =(6)(2)=12#0.So, p(A4A)=2.

Note that there are two non-zero rows. The third and fourth rows are zero rows.

We observe from the above example that the rank of a matrix in row echelon form is equal
to the number of non-zero rows in it. We state this observation as a theorem without proof. W

Theorem 1.11
The rank of a matrix in row echelon form is the number of non-zero rows in it.

The rank of a matrix which is not in a row-echelon form, can be found by applying the following
result which is stated without proof.

21 Applications of Matrices and Determinants
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Theorem 1.12
The rank of a non-zero matrix is equal to the number of non-zero rows in a row-echelon form
of the matrix.

Example 1.17

1 23
Find the rank of the matrix| 2 1 4 |by reducing it to a row-echelon form.
3 05
Solution
1 2 3
Let A={2 1 4/|. Applying elementary row operations, we get
3 05
R—-R-2R |1 2 3 1 2 3
Y RORBR o 4 S| RORZIR g 5 )
0 -6 4 0 0 O

The last equivalent matrix is in row-echelon form. It has two non-zero rows. So, p(4) = 2.

Example 1.18

2 -2 4 3
Find the rank of the matrix | -3 4 -2 —1| by reducing it to an echelon form.
6 2 -1 7

Solution
Let A be the matrix. Performing elementary row operations, we get

2 2 4 3 (2 2 4 37 Ror+3k [2-2 4 3
A=|-3 4 2 —|B22R 6 g 4 | R2RIBR g 5 g 7
6 2 -1 7 6 2 -1 7 08 —13 =2
2 2 4 3] 2 243
ROR-4R |0 5 ¢ 7 | _ROR=15 |0 5 ¢ 4|
0 0 —45 -30] 0032

The last equivalent matrix is in row-echelon form. It has three non-zero rows. So, p(4) =3 .
Elementary row operations on a matrix can be performed by pre-multiplying the given matrix by
a special class of matrices called elementary matrices.
Definition 1.7

An elementary matrix is defined as a matrix which is obtained from an identity matrix by
applying only one elementary transformation.

Remark

If we are dealing with matrices with three rows, then all elementary matrices are square matrices
of order 3 which are obtained by carrying out only one elementary row operations on the unit
matrix /,. Every elementary row operation that is carried out on a given matrix 4 can be obtained by
pre-multiplying 4 with elementary matrix. Similarly, every elementary column operation that is
carried out on a given matrix 4 can be obtained by post-multiplying Awith an elementary matrix. In
the present chapter, we use elementary row operations only.
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For instance, let us consider the matrix 4 =| a,;, a,, a,; |.

a3 Gy Ay

Suppose that we do the transformation R, — R, + AR, on A4, where A # 0 is a constant. Then, we get

R R iR ap ap a3
, >R, + AR,
A——— ay+Aayy ap+iay  ayy+ias; | ~..(D)
a3y a3y a3
1 0 0 1 00 1 0 0
Thematrix |0 1 A | isanelementary matrix, sincewehave [0 1 0 _RORAR, 12
0 0 1 0 0 1 0 0 1
0 0
Pre-multiplying Aby [0 1 A |, we get
0 1
10 0lta, a, a; a4 b i3
0 1 Allay ay ay|=|ay+iay, a,+Aa, a,+Aas | .. (2)
0 0 1j|lay ay a; 3 ) s3

1 0 0
From (1) and (2), we get 4 R2RHAR g 1 o1y
0 0 1

So, the effect of applying the elementary transformation R, - R, + AR; on A 1is the same as that

1 00
of pre-multiplying the matrix 4 with the elementary matrix |0 1 A |.
0 0 1

Similarly, we can show that
(1) the effect of applying the elementary transformation R, <> R, on A is the same as that of

1 00
pre-multiplying the matrix 4 with the elementary matrix [0 0 1
0 1 0

(i1) the effect of applying the elementary transformation R, — AR, on A is the same as that of

1 0 0
pre-multiplying the matrix 4 with the elementary matrix ([0 A 0
0 0 1
We state the following result without proof.
23 Applications of Matrices and Determinants
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Theorem 1.13

Every non-singular matrix can be transformed to an identity matrix, by a sequence of elementary
row operations.

2 -1
As an illustration of the above theorem, let us consider the matrix 4 = { 1 }

Then,

A| =12+3=15#0.S0, A4 is non-singular. Let us transform A4 into /, by a sequence of
elementary row operations. First, we search for a row operation to make a,, of 4 as 1. The elementary

1
. . 1 . . =
row operation needed for this is R — [Ele.The corresponding elementary matrix is £, =| 2

0 1
02—1_1_71
3 4| '

1 3 4

0

Then, we get £\ 4=

S N~

Next, let us make all elements below a,, of E A4 as 0. There is only one element a,,.

The elementary row operation needed for thisis R, = R, +(-3)R,.

1 0
The corresponding elementary matrix is E, = { }

-3 1]

1

rooll1 -1 |t 3
Then, we get E, (E.A)= - 2 |= L
a 3 4 0 5

Next, let us make a,, of E,(EA) as 1. The elementary row operation needed for this is

2
R, —>|— |R,.
L

1 0
The corresponding elementary matrix is £; = 0 2
11
1 0|1 L 1
2 |1 —=
Then, we get E; (E2 (EIA)) = o) = 7|,
0 — 11
11110 5 0 1

Finally, let us find an elementary row operation to make a,, of £, (E2 (E] A)) as 0. The elementary

. . 1 . ..
row operation needed for this is R, — R, +(E]R2.The corresponding elementary matrix is

L
E, = 2 1.
0 1
XII - Mathematics 24
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1%1—%{10}1
= :2'
o 1flo 1| 1!

We write the above sequence of elementary transformations in the following manner:

Then, we get E, (E3 (E2 (EIA))) -

1
N -1 1 —— o2 1 ra L
A:{z _1} ! (2)R‘ I S | _RoRACIR 2| (11)& 1 S & R‘{szz {1 O}
3 4 11 0 1
3 4 0o — 0 1
2
Example 1.19
31 4
Show that the matrix |2 0 —1| is non-singular and reduce it to the identity matrix by
5 2 1
elementary row transformations.
Solution
31 4
LetA=|2 0 —1[.Then, |4/=3(0+2)-1(2+5)+4(4-0)=6-7+16=15%0. So, A is
5 2 1

non-singular. Keeping the identity matrix as our goal, we perform the row operations sequentially on
A as follows:

i R
oA R—>IR 53 R >R -2R, R —R -5R 211 RIH(_EJRZ L
2 0 -1|—2—2 0 -1 E*Z‘”ﬁ“’>0—§—?—2>01 =
5 2 1 5 2 1
.l R
- - L 3 3 ] L 3 3]
I 0 —% I 0 —%
2
RlﬁRl—le,RséRs—le 11 R3—>(7EJR3 11 R‘—>R,+lR3,RZ—>RZ_ﬂR3 1 00
3 3 01 — |———2—0 1 — 2 2 010
2 2 0 0 1
00 IS 00 1
L 2 L | |
1.3.4 Gauss-Jordan Method
Let A4 be a non-singular square matrix of ordern . Let B be the inverse of A.
Then, we have AB = BA=1,. By the property of / ,wehave 4=1 A= AI, .
Consider the equation 4 =1 A4 ..(1)

Since A is non-singular, pre-multiplying by a sequence of elementary matrices (row operations)
on both sides of (1), 4 on the left-hand-side of (1) is transformed to the identity matrix /, and the
same sequence of elementary matrices (row operations) transforms 7, of the right-hand-side of (1) to
a matrix B. So, equation (1) transforms to /, = BA.Hence, the inverse of 4 is B. Thatis, 4™ = B.

25 Applications of Matrices and Determinants
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Note

If E.E,,---,E, are elementary matrices (row operations) such that (Ek ---EZE,)A =1, then

A'=E, - EE,.

Transforming a non-singular matrix 4 to the form /, by applying elementary row operations, is
called Gauss-Jordan method. The steps in finding 4™ by Gauss-Jordan method are given below:

Step 1

Augment the identity matrix / on the right-side of 4 to get the matrix [A | In] .

Step 2

Obtain elementary matrices (row operations) E, E,,---, E, such that (E, ---E,E ) A=1,.

Apply E,,E,,+,E on [A]1,]. Then [ (E, -+ E,E, ) A|(E, - E,E,)1, | Thatis, [ 1,] 4" ].

Example 1.20

Find the inverse of the non-singular matrix 4 = {

Solution

Applying Gauss-Jordan method, we get

‘ ‘ Chapter 1 Matrices.indd 26

5
6} , by Gauss-Jordan method.

05 1 0] RoR -1 6101 REDR 1 =6]0 —1]
[A|[2]: 1 BN 1 N
@ -1 6| 01 05[{10 0 5|1 0
1 -
Rzﬁng 1 -6 0 -1 RSR+6R 1 0| (6/5 -1
) 1 1 2 ) .
0 1 ]@1/5 o 0 1| (/5 0]
6/5 -1 1[6 -5
So, we get A~ = (675) =l .
1’5y 0] 5|1 0
Example 1.21 B
2 1 1
Find the inverse of 4={3 2 1| by Gauss-Jordan method.
2 1 2]
Solution
Applying Gauss-Jordan method, we get
2111100 R,—)lR] 1 (1/2) 1/2) | (1/2) 0 0
[4|5]=[321] 01 0]—2—3 2 1 0 10
2121001 2 1 2 0 01
R—>R-3R |1 (1/2) (1/2) 1/2) 00 1 (1/2) A/2) | (1/2) 0 0
RoRZ2R Vg a/2) —1/2) | —G/2y 1 0|—B22R 410 1 1| 3 20
0 0 1 -1 01 0 0 1 -1 01
XII - Mathematics 26
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! 10 1] 2-10] Ror-R [100] 3 -1-1

2 ylo1 1|3 2 0 —R2RR o 10| 4 2 1
001 |-101 001 -1 0 1
3 -1 -1
So,A"'=|-4 2 1
-1 0 1
|
EXERCISE 1.2
1. Find the rank of the following matrices by minor method:
-1 3 1 -2 3 01 21
W2 T e 7] G|y o a2 4 | @]o 2 4 3
i i - iii v — \4
-1 2 3-6-31
3 4 5 1 -1 8 1 0 2
2. Find the rank of the following matrices by row reduction method:
1 2 -1 _
1 113 3 85 2
: |3 -1 2
112 -13 4 (11) | 22 3 () |2 -5 1 4
5-1711 -1 2 3 =2
111 -
3. Find the inverse of each of the following by Gauss-Jordan method:
1 -1 0 1 2 3
12 -1 ..
® (I)L 2} ) |1 0 -1 (iii) [2 5 3
|6 -2 -3 1 0 8

‘ ‘ Chapter 1 Matrices.indd 27 @

1.4 Applications of Matrices: Solving System of Linear Equations

One of the important applications of matrices and determinants is solving of system of linear
equations. Systems of linear equations arise as mathematical models of several phenomena occurring
in biology, chemistry, commerce, economics, physics and engineering. For instance, analysis of
circuit theory, analysis of input-output models, and analysis of chemical reactions require solutions
of systems of linear equations.

1.4.1 Formation of a System of Linear Equations
The meaning of a system of linear equations can be understood by formulating a mathematical
model of a simple practical problem.

Three persons A, B and C go to a supermarket to purchase same brands of rice and sugar. Person A
buys 5 Kilograms of rice and 3 Kilograms of sugar and pays X 440. Person B purchases 6 Kilograms of rice
and 2 Kilograms of sugar and pays ¥ 400. Person C purchases 8 Kilograms of rice and 5 Kilograms of
sugar and pays X 720. Let us formulate a mathematical model to compute the price per Kilogram of rice
and the price per Kilogram of sugar. Letx be the price in rupees per Kilogram of rice and y be the price
in rupees per Kilogram of sugar. Person A buys 5 Kilograms of rice and 3 Kilograms sugar and pays
< 440. So,5x+3y =440. Similarly, by considering Person B and Person C, we get 6x+2y =400 and
8x+ 5y =720. Hence the mathematical model is to obtain x and y such that

5x+3y =440, 6x+2y =400, 8x+5y="720.

27 Applications of Matrices and Determinants
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Note

In the above example, the values of x and y which satisfy one equation should also satisfy all
the other equations. In other words, the equations are to be satisfied by the same values of x and y
simultaneously. If such values of x and y exist, then they are said to form a solution for the system
of linear equations. In the three equations, x and y appear in first degree only. Hence they are said

to form a system of linear equations in two unknowns x and y. They are also called simultaneous
linear equations in two unknowns x and y . The system has three linear equations in two unknowns
x and y.

The equations represent three straight lines in two-dimensional analytical geometry.
In this section, we develop methods using matrices to find solutions of systems of linear equations.

1.4.2 System of Linear Equations in Matrix Form

A system of m linear equations in n unknowns is of the following form:
ay, X, +a,x, +asx; +---+a, x, =b,
ay X, +ayX, +ayx, +---+a, x, =b,, )

a,x +a, ,x,+a x,+--+a, x =b ,

where the coefficients a;,i=1,2,--,m; j=12,---,n and b ,k=12,---,m are constants. If all the
b,'s are zeros, then the above system is called a homogeneous system of linear equations. On the
other hand, if at least one of the b, 's is non-zero, then the above system is called a non-homogeneous
system of linear equations. If there exist values «,, «t,, -+ , a, for x;, x,, --- , x, respectively which
satisfy every equation of (1), then the ordered n—tuple (a;, a,, -+, , ) is called a solution of (1).

The above system (1) can be put in a matrix form as follows:

ay Gy G5 4y,
Gy Gy Gy ooy, . .
Let A= be the mxn matrix formed by the coefficients of
aml am2 am3 amn
X, X,, X3, -+ ,x,.The firstrow of 4 is formed by the coefficients of x,, x,, x;, ---,x, in the same

order in which they occur in the first equation. Likewise, the other rows of A are formed. The first
column is formed by the coefficients of x,in the m equations in the same order. The other columns

are formed in a similar way.

X

x
Let X =|.° | be the nx1 order column matrix formed by the unknowns x,, x,, x;, --- , X

Let B=|." | be the mx1 order column matrix formed by the right-hand side constants

b

b, b, b, b

m*
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Then we get
ay ap 4 4y, X ap X, +anx, tasx; +-- +a,x, b,

AX = Ay Uy Gy o0 Oy, .xz _ Ay X, +ayX, +apXy +--- +a, X, _ 'bz B
aml am2 am3 e amn xn aml‘xl + am2‘x2 + am3‘x3 t+o + amn‘xn bm

Then AX = B is a matrix equation involving matrices and it is called the matrix form of the

system of linear equations (1). The matrix 4 is called the coefficient matrix of the system and the

a, a, a - a, | b
. |G Gy Gy Oy, . .
matrix is called the augmented matrix of the system. We denote the
aml am2 am3 e amn bm

augmented matrix by [4| B].

As an example, the matrix form of the system of linear equations
2 3 5|«x -7
2x+3y-5z+7=0,7y+2z-3x=17,6x-3y—-8z+24=01is|-3 7 2 ||y|=| 17
6 -3 8|z —24

1.4.3 Solution to a System of Linear equations

The meaning of solution to a system of linear equations can be understood by considering the
following cases :

Case (i) ﬂ}
Consider the system of linear equations /
2x-y =5, . (D) 6 7
x+3y =6. .. (2) 5 &
These two equations represent a pair of straight 4
lines in two dimensional analytical geometry (see the 3 43
Fig. 1.2). Using (1), we get ~ |02
g
x = 5+Ty .. 3) A =2
'l T~ 60 -|x
Substituting (3) in (2) and simplifying, we get y =1. 0 720 B B B
=t (e
Substituting y=1 in (1) and simplifying, we y

get x=3.
Both equations (1) and (2) are satisfied by x =3 and y =1.

That is, a solution of (1) is also a solution of (2).

So, we say that the system is consistent and has unique solution (3,1).
The point (3,1) is the point of intersection of the two lines 2x—y =5 and x+3y=6.
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Case (ii) y
Consider the system of linear equations i
3x+2y = 5, (D) X
6x+4y = 10 ..(2) 4
Using equation (1), we get N
x = 222 . (3) TN&
3 N Gh\
Substituting (3) in (2) and simplifying, we get0=0. X 0 X 356 1"
This informs us that equation (2) is an elementary q G,L2)
transformation of equation (1). In fact, by dividing equation
(2) by 2, we get equation (1). It is not possible to find N
uniquely x and y with just a single equation (1). .
Fig.1.3
So we are forced to assume the value of one unknown, say y =¢, where ¢ is any real number.

Then, x = S_th . The two equations (1) and (2) represent one and only one straight line (coincident

lines) in two dimensional analytical geometry (see Fig. 1.3) . In other words, the system is consistent (a
solution of (1) is also a solution of (2)) and has infinitely many solutions, as ¢ can assume any real value.

Case (iii) ij
Consider the system of linear equations 5 \ &)
. TR ©
4x+y = 6, .. (D) \ \\;
8x+2y = 18. (2 R\ \e

Using equation (1), we get

L—

6—
x:Ty - () X< \\ T 5 6 7 i

Substituting (3) in (2) and simplifying, we get 12 =18.

\
Y @.-2
This is a contradicting result, which informs us y'
that equation (2) is inconsistent with equation (1). So, Fig.1.4

a solution of (1) is not a solution of (2).

In other words, the system is inconsistent and has no solution. We note that the two equations
represent two parallel straight lines (non-coincident) in two dimensional analytical geometry (see Fig.
1.4). We know that two non-coincident parallel lines never meet in real points.

Note

(1) Interchanging any two equations of a system of linear equations does not alter the solution
of the system.

(2) Replacing an equation of a system of linear equations by a non-zero constant multiple of
itself does not alter the solution of the system.

(3) Replacing an equation of a system of linear equations by addition of itself with a non-zero
multiple of any other equation of the system does not alter the solution of the system.
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Definition 1.8

A system of linear equations having at least one solution is said to be consistent. A system
of linear equations having no solution is said to be inconsistent.

Remark

If the number of the equations of a system of linear equations is equal to the number of unknowns
of the system, then the coefficient matrix A4 of the system is a square matrix. Further, if 4 is a

non-singular matrix, then the solution of system of equations can be found by any one of the following
methods : (i) matrix inversion method, (ii) Cramer’s rule, (iii) Gaussian elimination method.

1.4.3 (i) Matrix Inversion Method

This method can be applied only when the coefficient matrix is a square matrix and non-singular.
Consider the matrix equation
AX = B, .. (D)
where 4 is a square matrix and non-singular. Since A is non-singular, A~ existsand A" A= A4~ =1.
Pre-multiplying both sides of (1) by 4", we get A~ (AX) = A"'B. That is, (A"IA)X =A"'B.
Hence, we get X = A'B.

Example 1.22
Solve the following system of linear equations, using matrix inversion method:

Sx+2y=3, 3x+2y=5.

Solution
. . 5 2 X 3
The matrix form of the system is AX = B, where 4 = 3 2 , X = ,B= E
y
5 2 L L1222
We find |A|: =10-6=4+#0.S0,4 existsand 4~ =— )
3 2 41-3 5
Then, applying the formula X = 47'B, we get
—4
x| 12 =2|3] 1] 6-10 _1—4_7_—1
y] 4[-3 5 |5] 4[-9+25] 4|16] |16| |4
4

So the solution is (x =-Ly= 4). m
Example 1.23

Solve the following system of equations, using matrix inversion method:

2x,+3x,+3x; =5, x,—2x,+x;=—4, 3x,—x,—2x, =3.
Solution

The matrix form of the system is AX = B, where

2 3 3 X, 5
A=11 2 1 [X=|x,|,B=|-4].
3 -1 2 X, 3
31 Applications of Matrices and Determinants

‘ ‘ Chapter 1 Matrices.indd 31 @ 31-01-2020 17:14:16‘ ‘



2 3 3
Wefind [4] = |1 -2 1 |=2(4+1)-3(-2-3)+3(-1+6)=10+15+15=40=0.
3 -1 2
So, A™" exists and
+H4+1) —(=2-3) +(-1+6)] 5 3 9
Alzﬁ(ade)zL —(—6+3) +(-4-9) —(-2-9) =70 5 -13 1
+(3+6) —(2-3) +(-4-3) 5 11 -7
Then, applying X = A™'B, we get
X, 5 3 945 25-12+27 40
X, - L -13 1 (|4 -1 25+52+3 _ L 80 |=| 2
40 40 40
X, 5 11 -7| 3 25-44-21 —40 -1
So, the solution is (x, =1,x, =2,x, =-1). |
Example 1.24
-4 4 4 I -1 1
IfA=|-7 1 3 |and B=|1 -2 -2/, find the products 4B and BA and hence solve the
5 -3 -1 2 1 3

system of equations x—y+z=4,x-2y—-2z=92x+y+3z=1.
Solution
-4 4 411 -1 1 —4+4+8 4-8+4 —4-8+12 8 0 0
Wefind 4B={-7 1 3|1 -2 2(=|-7+1+6 7-2+43 -7-2+9|=|0 8 0|=8/,
5 3 —1f|2 1 3 5-3-2 -5+6-1 5+6-3 0 0 8

1 -1 11]-4 4 4 —4+7+5 4-1-3 4-3-1

8 0 0
andBA=|1 -2 -2||-7 1 3 |=|-4+14-10 4-2+6 4-6+2|=/0 8 O0|=8I,.
0 0 8

2 1 345 3 -1 -8-7+15 8+1-9 8+3-3

So, we get AB = BA =8I,.That is, (%AJB = B(é/lj =I,.Hence, B = %A.

Writing the given system of equations in matrix form, we get

I -1 1/|/x 4 X 4
1 -2 2|yl =19]|. Thatis, B|y|=|9].
2 1 3|z 1 z 1

X 4 4 -4 4 44 | -16+36+4 . 24 3
So,|y|=B"9 =(%AJ 9 :é -7 1 3||9|==| —28+9+3 =3 ~16|=| -2

z 1 1 5 3 1|1 20-27-1 -8 -1
Hence, the solutionis (x =3,y =-2,z=-1). -
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EXERCISE 1.3

1. Solve the following system of linear equations by matrix inversion method:
(1) 2x+5y=-2, x+2y=-3 (i) 2x—y=8, 3x+2y=-2
(1) 2x4+3y—-z=9, x+y+z=9, 3x—y—z=-1
(iv) x+y+z-2=0, 6x—4y+5z-31=0, 5x+2y+2z=13

-5 1 3 1 1 2
2.1fA4=]7 1 -5|and B=|3 2 1|, find the products 4B and BA and hence solve the
1 -1 1 2 1 3

system of equations x+y+2z=13x+2y+z=7,2x+y+3z=2.

3. A man is appointed in a job with a monthly salary of certain amount and a fixed amount of
annual increment. If his salary was ¥ 19,800 per month at the end of the first month after 3
years of service and < 23,400 per month at the end of the first month after 9 years of service,
find his starting salary and his annual increment. (Use matrix inversion method to solve the
problem.)

4. Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women
can finish the same work jointly in 4 days. Find the time taken by one man alone and that of
one woman alone to finish the same work by using matrix inversion method.

5. The prices of three commodities 4,B and C are¥ x,y and z per units respectively. A person
P purchases 4 units of B and sells two units of 4 and 5 units of C . Person QO purchases 2
units of C and sells 3 units of 4 and one unit of B. Person R purchases one unit of 4 and
sells 3 unit of B and one unit of C . In the process, P,Q and R earn I 15,000, 1,000 and
< 4,000 respectively. Find the prices per unit of 4,Band C . (Use matrix inversion method to
solve the problem.)

1.4.3 (ii) Cramer’s Rule

This rule can be applied only when the coefficient matrix is a square matrix and non-singular. It

is explained by considering the following system of equations:

ay X, +anx, + a5, = b,
Ay X, + Ay Xy + Ay X, = by,

a, X, + aynx, + ayx; =b;,

ay 4y 4y a, 4y 4y

where the coefficient matrix | a,, a,, a,; | is non-singular. Then | @,, a,, a,;| = 0.

Ay Az Uy Ay Ay Ay

a, 4y di

Letus put A=|a,, a, a,|.Then, we have

dy) A3y Uy
a, 4, a; ap Xy dp a4 ay X, TapX, tasx;  a, a b a, a;
YA = x| ay ay, G| =|ayX, Gy y| = |Gy X tayX,tayx; a,, ay| =|b, ay, ay|=A,
ay) Ay Ay ay X Ay, Ay ay X, tayX, Tasx; ay, ay by, a,, ay
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Since A = 0, we get x, =—
a, b a; a, ay b

.. A A
Similarly, we get x, = Tz,)@ :f, where A, =|a,, b, a,;|,A, =|a,, a,, b,| .

ay, by ay, as as, b
A A A
Thus, we have the Cramer’s rule x, = —",x, =—=,x, = —,
A A A
ay dp 4y b a, a; a, b ay a, a, b,
where A =|a, a,, ay|, A =|b, a,, ay|, A, =|a, b, ay|, Ay =|ay ay, b,
Qy) Ay, Ay by ay, as; ay by ay a, as, b,
Note

Replacing the first column elements a,,,a,,,a;, of & withb,,b,,b, respectively, we get A,.
Replacing the second column elements a,,,4a,,,a,,0f & withb,,b,, b, respectively, we get A,.
Replacing the third column elements a,,,a,,,a,, of & withb,,b,,b, respectively, we get A;.
IfA =0, Cramer’s rule cannot be applied.

Example 1.25
Solve, by Cramer’s rule, the system of equations

X —x,=3,2x,+3x, +4x; =17,x, +2x;, = 7.
Solution
First we evaluate the determinants

=10 3-10 13 0 1 -1 3
A=|2 3 4]=6#0,A =173 4|=12,A,=2 17 4|=-6,A,=|2 3 17|=24.
0 1 2 7 1 2 0o 7 2 01 7
By Cramer’s rule, we get xlzizgzz, xzzﬁz_—6:_1, x3:ﬁ:4_
A 6 A 6 6

So, the solution is (x, =2,x, =—1,x; =4).

Example 1.26

In a T20 match, a team needed just 6 runs to win with 1 ball left to go in
the last over. The last ball was bowled and the batsman at the crease hit it high
up. The ball traversed along a path in a vertical plane and the equation of the
pathis y=ax’ +bx+c with respect to a Xy-coordinate system in the vertical
plane and the ball traversed through the points (10,8),(20,16),(40,22), can

you conclude that the team won the match?

Justify your answer. (All distances are measured in metres and the meeting point of the plane of
the path with the farthest boundary line is (70,0).)

Solution
The path y =ax’ +bx+c passes through the points (10,8),(20,16),(40,22). So, we get the
system of equations 100a +10b+ ¢ =8,400a +20b+c =16,1600a +40b +c =22. To apply Cramer’s

rule, we find
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100 10 1 1 11
A =1400 20 1{=1000{4 2 1/=1000[-2+12-16]=-6000,
1600 40 1 16 4 1
g 10 1 4 1 1
A =1]16 20 1/=20/8 2 1{=20[-8+3+10]=100, -
2240 1 11 4 1 of™ AL,
100 8 1 141 LOEZCS
A, =1400 16 1/=200{4 8 1[=200[-3+48-84]=-7800,
1600 22 1 16 11 1
100 10 8 1 1 4
A; = 1400 20 16(=2000{4 2 8|=2000[-10+84—-64]=20000.
1600 40 22 16 4 11
A
By Cramer’s rule, we get a = ﬁ:—L,bzﬁ:M:E:E,CZJZ_M:_EZ_E_
A 60 A 6000 60 10 A 6000 6 3
So, the equation of the path is y = —sz wLEx—E .
60 10 3

When x =70, we get y =6.So, the ball went by 6 metres high over the boundary line and it is
impossible for a fielder standing even just before the boundary line to jump and catch the ball. Hence
the ball went for a super six and the team won the match. L

EXERCISE 1.4

1. Solve the following systems of linear equations by Cramer’s rule:
(1) S5x-2y+16=0,x+3y-7=0

(i) 242y =122 413y =13
X X

(1) 3x+3y—z=11, 2x—y+2z=9, 4x+3y+2z=25

v 322101, 2, 0, 0205 4

X y z x y z x y z
2. In acompetitive examination, one mark is awarded for every correct answer while " mark is

deducted for every wrong answer. A student answered 100 questions and got 80 marks. How
many questions did he answer correctly ? (Use Cramer’s rule to solve the problem).

3. A chemist has one solution which is 50% acid and another solution which is 25% acid. How
much each should be mixed to make 10 litres of a 40% acid solution ? (Use Cramer’s rule to
solve the problem).

4. A fish tank can be filled in 10 minutes using both pumps A and B simultaneously. However,
pump B can pump water in or out at the same rate. If pump B is inadvertently run in reverse,
then the tank will be filled in 30 minutes. How long would it take each pump to fill the tank by
itself ? (Use Cramer’s rule to solve the problem).
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5. A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies
and two vadais is ¥ 150. The cost of the two dosai, two idlies and four vadais is ¥ 200. The
cost of five dosai, four idlies and two vadais is ¥ 250. The family has ¥ 350 in hand and they
ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the
amount they had ?

1.4.3 (iii) Gaussian Elimination Method

This method can be applied even if the coefficient matrix is singular matrix and rectangular
matrix. It is essentially the method of substitution which we have already seen. In this method, we
transform the augmented matrix of the system of linear equations into row-echelon form and then by
back-substitution, we get the solution.

Example 1.27
Solve the following system of linear equations, by Gaussian elimination method :

4x+3y+6z=25, x+5y+7z=13, 2x+9y+z=1.

Solution
Transforming the augmented matrix to echelon form, we get

4 3 6| 25 1 57 13 . 1 5 7 13
15 7| 13|—28514 3 6| 25| —52828 510 —17 22| =27
2 91 1 2 91 1 0 -1 -13| -25
P 5 7 13 I 5 7 13
® — A2l CD 10 17 22| 27 |—22RR 10 17 22 | 27 . ®
0 1 13 25 0 0 199 | 398
The equivalent system is written by using the echelon form:
x+5y+7z =13, .. (D
17y+22z = 27, .. (2
199z = 398. ...(3)

398
From (3), we get z=——=
(3), we get z 100

27-22x2  -17
17 17
Substituting z=2,y =-1in (1), we get x =13-5x(-1)-7x2=4.

=-1.

Substituting z=21n (2), we get y =

So, the solutionis (x =4,y =-1,z=2). [ |

Note. The above method of going from the last equation to the first equation is called the method
of back substitution.

Example 1.28
The upward speed v(¢)of a rocket at time ¢ is approximated by

v(t)=at’ +bt+c, 0<t<100 where a,b, and c are constants. It has been

found that the speed at times ¢t =3, =6, and ¢t =9 seconds are respectively,
64, 133, and 208 miles per second respectively. Find the speed at time

t =15 seconds. (Use Gaussian elimination method.)
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Solution
Since v(3) =64, v(6) =133, and v(9) =208, we get the following system of linear equations
9a+3b+c = 64,
36a+6b+c 133,
8la+9bh+c = 208.

We solve the above system of linear equations by Gaussian elimination method.

Reducing the augmented matrix to an equivalent row-echelon form by using elementary row
operations, we get

9 31| 64 9 3 1| 64 93 1| 64
[4]B]=|36 6 1| 133 | 228 ARRORIR 1y 6 3| —123 | L2RAEOIRORAD) o1 o 1| 41
81 9 1| 208 0 -18 -8 | —368 094|184
9 3 1] 64 93 1 | 64 931 64
S L SN ) O W Y ) LS 2SN ) B T ) B e G LSSEN o B RS T VR
018 8 | 368 00 1] -1 001] 1

Writing the equivalent equations from the row-echelon matrix, we get
9a+3b+c=64, 2b+c =41, c=1.

(41-c¢) _ (41-1) =20, a= 64-3b-c _ 64-60-1 _ 1

By back substitution, we get c =1, b= —.
2 2 9 9 3

So, we get v(t) = %tz +20z+1. Hence, v(15) = %(225) +20(15)+1=75+300+1=2376. [ |

EXERCISE 1.5

1. Solve the following systems of linear equations by
Gaussian elimination method:

(1) 2x-2y+3z=2, x+2y—-z=3, 3x—y+2z=1
(1) 2x+4y+62=22, 3x+8y+5z=27, —x+y+2z=2
2. If ax’+bx+c is divided by x+3,x—5, and x—1, the remainders are 21,61 and 9
respectively. Find a,b and c. (Use Gaussian elimination method.)
3. An amount of ¥ 65,000 is invested in three bonds at the rates of 6%, 8% and 9% per annum

respectively. The total annual income is I 4,800. The income from the third bond is ¥ 600
more than that from the second bond. Determine the price of each bond. (Use Gaussian
elimination method.)

4. Aboy is walking along the path y = ax” + bx + ¢ through the points (-6,8),(-2,-12), and (3,8) . He
wants to meet his friend at P(7,60). Will he meet his friend? (Use Gaussian elimination

method.)
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1.5 Applications of Matrices: Consistency of System of
Linear Equations by Rank Method

In section 1.3.3, we have already defined consistency of a system of linear equation. In this
section, we investigate it by using rank method. We state the following theorem without proof:

Theorem 1.14 (Rouché-Capelli Theorem)

A system of linear equations, written in the matrix form as AX = B, is consistent if and only if the
rank of the coefficient matrix is equal to the rank of the augmented matrix; thatis, p(4) = p([4| B]).

We apply the theorem in the following examples.

1.5.1 Non-homogeneous Linear Equations

Example 1.29
Test for consistency of the following system of linear equations and if possible solve:

X+2y-z=3,3x—y+2z=1, x-2y+3z=3, x-y+z+1=0.
Solution

Here the number of unknowns is 3.

The matrix form of the system is AX = B, where

12 -1 3
x
3-12 1
A - )X: y JB:
1 23 3
z
1 -1 1 -1
12 -1 3
o 3-12 |1
The augmented matrix is [A|B] =
123 |3
-1 1] -1

Applying Gaussian elimination method on [4 | B], we get

R,—>R-3R, |1 2 —-1| 3 R—>(-DR, |12 -1]3
R,—R,-R, R —(-DR,,
R—>R-R, |0 -7 5|8 Ro-nr |07 -5]8
[4|B]———— —_—
0-4 41| 0 04410
0-3 2|4 03 -2|4
12 -1 3 12-1|3 12-1]3
R,—>7R,—~4R,,
R—>7R-3R, |07 5] 8 RoR+(-8) |07 5|8 Ror-r |07 -5|328
) } }
00 -8 | -32 00 1 |4 001 |4
00 1 4 001 |4 00 0|0
There are three non-zero rows in the row-echelon form of [A4 | B].So, p([A|B])=3.
12 -1
. 107 =5 .
So, the row-echelon form of A4 is 00 1 . There are three non-zero rows in it. So p(A4) =3.
00 O
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Hence, p(A4)=p([4|B]) =3.

From the echelon form, we write the equivalent system of equations
x+2y—z=3,7y-5z=8, z=4, 0=0.

The last equation 0 =0 is meaningful. By the method of back substitution, we get

z =4
7y-20
x =3-8+4 = x=-1.

8 = y=4,

So, the solution is (x =—1,y =4,z =4).(Note that 4 is not a square matrix.) [

Here the given system is consistent and the solution is unique.

Example 1.30
Test for consistency of the following system of linear equations and if possible solve:
4x—-2y+6z=8, x+y—-3z=-1, 15x-3y+9z =21.

Solution
Here the number of unknowns is 3.

The matrix form of the system is AX = B, where

4 -2 6 X 8
A=1|1 1 3|, X=|y|,B=|-1
15 -3 9 z 21

Applying elementary row operations on the augmented matrix[ 4 | B], we get

4 2 6| 8 11 3| 1] rRor-4r, [1 1 =3 -1
[41B]=| 1 1 3| —1|—L2k g o 6| g | L2RDR Ty 6 18| 12
153 9 |21 15 -3 9 | 21 0 —18 54 | 36

R —R+(-6), |1 1 -3 | -1 11 3] -1

R, >R, +(-18) 01 -3 -2 R,—>R,—R, 01 3| 2l

01-3]-=2 00 0] 0

So, p(A4) = p([4]| B]) =2 < 3.From the echelon form, we get the equivalent equations

x+y-3z = -1,y-3z=-2,0=0.

The equivalent system has two non-trivial equations and three unknowns. So, one of the unknowns
should be fixed at our choice in order to get two equations for the other two unknowns. We fix z
arbitrarily as a real number ¢, and we get y =3r-2, x =—-1-(3¢t-2)+3¢=1. So, the solution is
(x =lLy=3t-2,z= t) , where ¢ is real . The above solution set is a one-parameter family of solutions.
Here, the given system is consistent and has infinitely many solutions which form a one parameter

family of solutions. -

Note
In the above example, the square matrix A is singular and so matrix inversion method cannot be

applied to solve the system of equations. However, Gaussian elimination method is applicable and we
are able to decide whether the system is consistent or not. The next example also confirms the
supremacy of Gaussian elimination method over other methods.
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Example 1.31

Test for consistency of the following system of linear equations and if possible solve:
X—y+z=-9, 2x-2y+2z=-18, 3x-3y+3z+27=0.
Solution

Here the number of unknowns is 3.

The matrix form of the system is AX = B, where

I -1 1 X -9
A=12 2 2|,X=|y|,B=|-18
3 33 z =27

Applying elementary row operations on the augmented matrix[4 | B], we get

1 11| 9] ror-2r, [1-11]-9
[4|B]=|2 2 2 | -18|—R2R3R 1o 0 0 o

3 33| 27 000/ 0
So,p(4)=p([4]| B])) =1<3.

From the echelon form, we get the equivalent equationsx—y+z=-9, 0=0, 0=0.
The equivalent system has one non-trivial equation and three unknowns.

Taking y =s,z =t arbitrarily, we get x—s+¢=-9; orx=-9+s—1.

So, the solution is (x=-9+s—17,y =s,z=t), where s and ¢ are parameters.

The above solution set is a two-parameter family of solutions.

Here, the given system of equations is consistent and has infinitely many solutions which form a
two parameter family of solutions.

Example 1.32 -
Test the consistency of the following system of linear equations
X—y+z=-9, 2x—y+z=4,3x—y+z=6,4x—y+2z=7.

Solution

Here the number of unknowns is 3.
The matrix form of the system of equations is 4X = B, where

1 -1 1 -9
X
2 -1 1 4
A = ,X=|yl|,B=
3 -1 1 6
zZ
4 -1 2 7

Applying elementary row operations on the augmented matrix [4 | B], we get

1 -1 11|-9| R->R-2R, |1 -1 1 -9
R.—R.-3R
2-1 1| 4| ROFaR |01 -1| 22
[4]|B]= —>
3.1 116 02 2| 33
4-1 2|7 03 2| 4
-1 1 | -9 1 -1 1] -9
R.—>R.-2R
PR 3R 1001 —1 ] 22| rer |01 -1 22
4 4 2 ) 3 4
00 0 |-l 00 1 |-23
00 1 |-23 00 0 |11

So, p(A)=3 and p([4]|B])=4. Hence p(A4)# p([4|B)]).
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If we write the equivalent system of equations using the echelon form, we get

X=y+z=-9, y—-z=22, z=-23, 0=-11.

The last equation is a contradiction.
So the given system of equations is inconsistent and has no solution. [ |
By Rouché¢ - Capelli theorem, we have the following rule:

* If there are n unknowns in the system of equations and p(A4) = p([4|B])=n, then the
system AX = B, is consistent and has a unique solution.

» If there are n unknowns in the system AX = B,and p(A4)=p([4|B])=n—k,k #0 then the
system is consistent and has infinitely many solutions and these solutions form a
k — parameter family. In particular, if there are 3 unknowns in a system of equations and
p(A)=p([A]| B]) =2, then the system has infinitely many solutions and these solutions
form a one parameter family. In the same manner, if there are 3 unknowns in a system of
equations and p(A4) = p([4]| B]) =1, then the system has infinitely many solutions and these
solutions form a two parameter family.

o If p(A4)# p([A4]| B]), then the system AX = B is inconsistent and has no solution.
Example 1.33

Find the condition on a,b and ¢ so that the following system of linear equations has one
parameter family of solutions: x+ y+z=a, x+2y+3z=>b, 3x+5y+7z=c.

Solution
Here the number of unknowns is 3.

(O, T NS R
N W =

1 X a
The matrix form of the system is AX = B, where 4=|1 ,X=|y|,B=|b].
3 z c

Applying elementary row operations on the augmented matrix [A4 | B], we get

I' 11| a|l R-R-R, 111 a
[4]B]=[123 | p|-D2RBR o1 2] bu
357 c 024 c-3a
111 a 111 a
RORZZR 1o 1 2 b—a —-l012]| b-a

000 (c=3a)-2(b—a)| |00 0| (c-2b-a)

In order that the system should have one parameter family of solutions, we must have

p(A) = p([4, B]) = 2. So, the third row in the echelon form should be a zero row.

So,c—2b—a=0 = c=a+2b. -
Example 1.34
Investigate for what values of 4 and u the system of linear equations

X+2y+z=7, x+y+Az=u,x+3y-5z=5
has (i) no solution (i1) a unique solution (ii1) an infinite number of solutions.
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Solution
Here the number of unknowns is 3.
1 2 1 X 7
The matrix form of the system is AX =B, where 4=|1 1 A [, X=|y|,B=|u|.
1 3 -5 z 5

Applying elementary row operations on the augmented matrix [4 | B], we get

121 |7 12 1] 7
[A]B]=[11 2 | u|-22R 4113 5| 5
1355 11 2|
R—-R-R, |1 2 1 7 12 1 7
_RORR g1 6 | 2 |R2RER g1 6 | 2
0 -1 A-1] u-7 00 24-7| u-9

(1) If A=7 and p =9, then p(4)=2and p([4|B])=3. So p(4)# p([4|B]). Hence the
given system is inconsistent and has no solution.

(i) If A#7 and g is any real number, then p(A4)=3 and p([4]|B])=3.
So p(A4) = p([4| B]) =3 = Number of unknowns. Hence the given system is consistent and
has a unique solution.

(i) If A=7 and u=9, then p(4)=2 and p([4]|B])=2.

So, p(A4) = p([4]| B]) = 2 < Number of unknowns. Hence the given system is consistent and has

infinite number of solutions. [ |

EXERCISE 1.6

1. Test for consistency and if possible, solve the following systems of equations by rank method.
(1) x—y+2z=2, 2x+y+4z=7, 4x—-y+z=4
(1) 3x+y+z=2, x-3y+2z=1, Tx—y+4z=5
(1) 2x+2y+z=5 x—y+z=1, 3x+y+2z=4
(1v) 2x—y+z=2, 6x-3y+3z=6, 4x-2y+2z=4

2. Find the value of £ for which the equations kx—2y+z=1, x-2ky+z=-2, x—-2y+kz=1
have

(1) no solution (i1) unique solution (ii1) infinitely many solution
3. Investigate the values of 2 and p the system of linear equations 2x+3y+5z=9,
Tx+3y—5z=8, 2x+3y+Az=pu, have

(1) no solution (i1) a unique solution  (iii) an infinite number of solutions.
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1.5.2 Homogeneous system of linear equations
We recall that a homogeneous system of linear equations is given by
a, X, +a,x, +a,x; +--- +a,x, =0,

ay X, +ayX, +ayx, +--- +a, x, =0, 0

a, x+a x,+a x,+--+a x =0,
where the coefficients a;,i=1,2,---,m; j=1,2,---,n are constants. The above system is always
satisfied by x, =0,x, =0,---,x, = 0.This solution is called the trivial solution of (1). In other words,

the system (1) always possesses a solution.

The above system (1) can be put in the matrix form 4X =0, _,, where

ay 4y diz 4y, X 0
a,, a, a - a X 0
21 Yy Ay 20 2
A - ’X | ’Om x1 7|
aml am2 am3 T amn ‘xn O

We will denote O, |, simply by the capital letter O.SinceO is the zero column matrix, it is
always true thatp(A4)=p([4|0])<m. So, by Rouché-Capelli Theorem, any system of

homogeneous linear equations is always consistent.

Suppose that m < n,then there are more number of unknowns than the number of equations. So
p(A)=p([4]|O]) < n. Hence, system (1) possesses a non-trivial solution.
Suppose that m = n, then there are equal number of equations and unknowns:

a, X, +a,x, +a,x; +--- +a,x, =0,

Ay X, +ayX, +ayx, +--- +a, x, =0, 2

a,x, +a,x,+a,x;+--+a x =0,
Two cases arise.

Case (i)
If p(A4)=p([A4|O])=n,then system (2) has a unique solution and it is the trivial solution.

Since p(4)=n, |4 =0. So for trivial solution | 4|= 0.
Case (ii)

If p(A4)=p([4]0]) <n, then system (2) has a non-trivial solution. Since p(4)<n, A| =0.In
other words, the homogeneous system (2) has a non-trivial solution if and only if the determinant
of the coefficient matrix is zero.

Suppose that m > n, then there are more number of equations than the number of unknowns.

Reducing the system by elementary transformations, we get p(4) = p([4]0]) < n.
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Example 1.35
Solve the following system:

x+2y+3z=0, 3x+4y+4z=0, 7x+10y+12z=0.
Solution

Here the number of equations is equal to the number of unknowns.

Transforming into echelon form (Gaussian elimination method), the augmented matrix becomes

12 3][0] rRor-3r, [1 2 3 |0] Rorsc1, [123] 0
34 4| 0|—R2RTR o 5 5| o|B2RED oo 5| o
710 12| 0 0490 049 0
12 3] 0] 1230
RORZIR 1o 2 5 | o —L2R=CD 1o 2 5] o
00-1| 0 0010

So, p(A4) = p([4]| O]) =3 = Number of unknowns.

Hence, the system has a unique solution. Since x=0, y=0, z=0 is always a solution of the

homogeneous system, the only solution is the trivial solution x=0, y =0, z=0. [
Note
In the above example, we find that
1 2 3
|4=]3 4 4 |=1(48-40)-2(36—28)+3(30-28)=8-16+6=-2#0.
7 10 12

Example 1.36

Solve the system: x+3y—-2z=0, 2x—y+4z=0, x—-11y+14z=0.
Solution

Here the number of unknowns is 3.

Transforming into echelon form (Gaussian elimination method), the augmented matrix becomes

13 2| 0] &roroor, [1 3 2] 0] rorecn, [13-2]0 13 22]0
2 -1 4| 0|—B2RR 1o 7 g | 0| B2 g 7 8| 0| B2RR 1o 7 8] 0]

1 -11 14| 0 0-1416| 0 07 8]0 00 010

So, p(A4)=p([4]|O]) =2 <3 =Number of unknowns.

Hence, the system has a one parameter family of solutions.
Writing the equations using the echelon form, we get
x+3y-2z=0, 7Ty-8z=0, 0=0.

Taking z =1, where ¢ is an arbitrary real number, we get by back substitution,

XII - Mathematics 44
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z=1,

Ty-8t=0 = y:%,

x+3(%—2t=0 = x+@:0 = x:—&.

.. 107 8¢ )
So, the solution 1s(x = = y= 7,2 = tj, where ¢ is any real number. L

Example 1.37
Solve the system: x+y—-2z=0,2x-3y+z=0,3x-7y+10z=0,6x-9y+10z=0.
Solution

Here the number of equations is 4 and the number of unknowns is 3. Reducing the augmented
matrix to echelon-form, we get

1 1 =2]0] rR>R-2r, [1 1 =21 0 1 1 =2 |0]

4101 2 3 110 %jﬁjiﬁl’% 0 =5 51| 0 ﬁjjﬁji((j} Joo1 1o

3 -7 100 0 -10 16 | © 0 5 8.0

6 -9 10 | 0 0 -15 22| 0 0 -15 22 | 0]

11 2] 0 11 =210 11 =2 |0]

Fokask |01 1| 0 xorS ™ o1 1] 0| roreg |01 -1 |0

00 3]0 00 110 00 1 [0

00 710 00 110 00 0 |0

So, p(A4) = p([4]|O]) =3 = Number of unknowns.

Hence the system has trivial solution only. [ |

Example 1.38
Determine the values of 4 for which the following system of equations
BA-8)x+3y+3z=0, 3x+(BA—-8)y+3z=0, 3x+3y+(BA1-8)z=0
has a non-trivial solution.

Solution

Here the number of unknowns is 3. So, if the system is consistent and has a non-trivial solution,
then the rank of the coefficient matrix is equal to the rank of the augmented matrix and is less than 3.
So the determinant of the coefficient matrix should be 0.

Hence we get

3-8 3 3 3A-2 3A-2 3A-2
3 3-8 3 =0or| 3 31-8 3 |=0 (byapplying R, >R +R,+R,)
3 3 31-8 3 3 31-8
I 1 1
or (BA-2)|3 3-8 3 = 0 (by taking out (34 —-2) from R))
3 3 31-8
45 Applications of Matrices and Determinants
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1 1 1
or BA-2)|0 34-11 O = 0 (by applying R, > R, -3R,R, - R, -3R,))
0 0 31-11
5 2 11
or BA-2)(34-11)"0. So A=§ and}t=?. -

We now give an application of system of linear homogeneous equations to chemistry. You are
already aware of balancing chemical reaction equations by inspecting the number of atoms present on
both sides. A direct method is explained as given below.

Example 1.39
By using Gaussian elimination method, balance the chemical reaction equation:

CH,+0,— CO,+H,O.

(The above is the reaction that is taking place in the burning of organic compound called isoprene.)

Solution
We are searching for positive integers x,,x,,x; and x, such that
x,C,H, +x,0, = x,CO, +x,H,0. . (1)

The number of carbon atoms on the left-hand side of (1) should be equal to the number of carbon
atoms on the right-hand side of (1). So we get a linear homogenous equation

5%, =x;,= 5x,—x,=0. .. (2)
Similarly, considering hydrogen and oxygen atoms, we get respectively,

8x, =2x, = 4x,—x,=0, ..(3)
2x, =2x,+x, = 2x,-2x;-x,=0. .. (4

Equations (2), (3), and (4) constitute a homogeneous system of linear equations in four unknowns.
50 -1 0 0

The augmented matrix is [4|B]=|{4 0 0 -1| O].
02 -2 -1 0

By Gaussian elimination method, we get

0 -1 ] o] | A6LQS52Z

40 0 -1] 0 40
(4] B]—2CR 415 0 -1 0 | o228 410 2 2
02 2 1] 0 50 -1 0
40 0 -1]0

RAR-SR | 5 5 4

00 -4 5|0

Therefore, p(A) = p([4]| B]) =3 <4 = Number of unknowns.
The system is consistent and has infinite number of solutions.
Writingthe equations using the echelon form, we get 4x, — x, =0,2x, —2x; —x, = 0,—4x; +5x, =0.

So, one of the unknowns should be chosen arbitrarily as a non-zero real number.
7t t

.. t
Let us choose x, =¢,t # 0. Then, by back substitution, we get x, = R X, = Z’xl = s
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Since x,,x,,x,, and x, are positive integers, let us choose #=4.
Then, we get x, =1,x, =7,x;,=5 and x,=4.
So, the balanced equation is C;H, +70, - 5CO, +4H,0. ]

Example 1.40
If the system of equations px+by+cz=0, ax+qy+cz=0, ax+by+rz=0has a non-trivial

solution and p = a,q = b,r = c, prove that P + q + ! =2.

p—a q-b r—c

Solution
Assume that the system px+by+cz=0,ax+qy+cz=0,ax+by+rz=0 has a non-trivial

solution.
p b ¢
So, we have | , g cl|= 0.Applying R, - R, — R, and R, — R, — R, in the above equation,
a b r
we get
p b c p b c
a-p q-b 0 |=0.Thatis, |-(p—a) g-b 0 [=0.
a—p 0 r-c —(p—a) 0 r-c

p b c

p—a q-b r-c
Since p=a,q=b,r =c,we get (p—a)(g—-b)(r—c)| —1 1 0 |=0.
-1 0

P b c |

p—a q-b r—c
-1 1 0 |=0.

. . b
Expanding the determinant, we get L +—< =0

p—a q-b r—c

That is, P +q—(q—b)+r—(r—c):0 = p + q + r =2.
p—a q—>b r—c p—a q-b r-c
|
EXERCISE 1.7
1. Solve the following system of homogenous equations.
(1) 3x+2y+7z=0, 4x-3y-2z=0, 5x+9y+23z=0
(1) 2x+3y-z=0, x—y—-2z=0, 3x+y+3z=0
2. Determine the values of A for which the following system of equations
x+y+3z=0, 4x+3y+Az=0, 2x+ y+2z=0 has
(1) a unique solution (ii) a non-trivial solution.
3. By using Gaussian elimination method, balance the chemical reaction equation:
GHs+0, — H,0+CO,
47 Applications of Matrices and Determinants
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@ EXERCISE 1.8 |

Choose the Correct or the most suitable answer from the given four alternatives :
1. If |adj(adj 4) |=| 4|’ then the order of the square matrix A4 is

(D3 (2) 4 3)2 QR
2. If A is a 3x3 non-singular matrix such that 44" = 4" 4and B=A4"4", then BB" =
(1) 4 (2) B 3 1 4) B
3.0 4= 0 . B=adjd and C=34, then 248 _
12 1]
1 1 1
1) - 2) - 3) = 4)1
(M) 5 @ OF @
4. If AF _2}=[6 0}, then 4=
1 4 0 6
) 1 2 4 2 4 -1
1 2 3 4
1 B A G I BT
5 IfAz{7 3'},then 91, - A=
4 2
A—l
(1) 47! () - (3) 34" (4) 247"
2 1 4
6. If A:{ 0} and B:{ } then |adj(4B) |=
1 5 2 0
® ®
(1) —40 (2) -80 (3) -60 (4) -20
1 x O
7. If P=|1 3 0 | isthe adjoint of 3x3 matrix 4and | 4|=4, then x is
2 4 2
(1) 15 (2) 12 (3) 14 (4) 11
301 -1 a, dp 4a;
8.1f A=|2 -2 0 |and 4"'=|a, a, a, | thenthe valueof a, is
1 2 -1 a, Gy, Ay
(o (2) -2 (3) -3 -1
9. If 4,B and C are invertible matrices of some order, then which one of the following is not
true?
(1) adj A=| 4| 4™ (2) adj(4B) = (adj A)(adj B)
(3) detA™ =(detA)" (4) (4BC)'=C'B'4™
12 -1 1 -1
10. If (4B)" ={ 7} and 4™ ={ }, then B™' =
-19 27 -2 3
2 =5 8 5 31 8 -5
1 2 3 4
U @ 3] oL @
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11. If 447" is symmetric, then 4° =

(1) 4™ 2) 'y (3) 4

5 3
12. If A4 is a non-singular matrix such that 4~ ={ 5 J ,then (4")"' =

(1) {‘25 ﬂ @) [_52 _"’J 3) B ‘ﬂ

3 4
13.If 4=|° | and 47 = 4" , then the value of x is
2
5
4 3 3
1) — 2) — 3) =
O > OF
1 tan —
14. If A= and AB=1,,then B=
—tan— 1
(1) (cos2 %jA @) (cos2 %JAT (3) (cos*0)1
[ 0 in@ k 0
15.1F 4= "7 " and A(adj 4) = then k =
@ | —sinf cosO 0 %
(Ho (2) sin6 (3) cosO
2 3
16. If 4= 5 2} be such that A4 =4, then A is
(1) 17 ) 14 (3) 19

2 3 1
17. Ifadez[ }and aijz{
4 1 3

-2 ) .
. } then adj(4B) is

(4) 4y

4) (smz %jA

41

(4) 21

-7 -1 -6 5 =7 7 -6 -2
1 2 3 4
o7 I T T
1 2 3 4
18. Therank ofthematrix | 2 4 6 8 | is
-1 2 -3 -4
(1 (2) 2 (3) 4 “4) 3
a_ b m _c_.d n m b a m
19. If x"y” =e",xy" =€",A, = A, = A = , then the values of x and y
n d c n c
are respectively,
(1) @80 &) (2) log(A/A,),log(A, /A
(3) log(A, /) log(A, / A)) (4)) e R
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20. Which of the following is/are correct?
(1) Adjoint of a symmetric matrix is also a symmetric matrix.
(i1) Adjoint of a diagonal matrix is also a diagonal matrix.
(111) If 4 is a square matrix of order » and 4 is a scalar, then adj(14) = 1" adj(A) .

(iv) A(adjd) = (adjd)A=| A|1

(1) Only (1) (2) (i1) and (iii) (3) (iii) and (iv) (4) (1), (ii) and (iv)
21. If p(A)=p(A4|B]), then the system 4X = B of linear equations is

(1) consistent and has a unique solution (2) consistent

(3) consistent and has infinitely many solution (4) inconsistent

22. If 0<6<mand the system of equations x+(sinf)y—(cosf)z=0,(cos@)x—y+z=0,

(sin@)x + y —z =0 has a non-trivial solution then 0 is

2w 3m 57 T
) — 2) — 3) = 4 T
(1) 3 () . ()~ 4) 1
1 2 7 3
23. The augmented matrix of a system of linear equationsis |0 1 4 6 | . The system

0 0 A-7 u+5s

has infinitely many solutions if

() A=7,u=-5 2) A=-7,u=5 B) A#T,u#-5 4) A=T,u=-5
2 -1 1 31 -1
24. Let A=|-1 2 —1|and4B=|1 3 x |.If B istheinverse of A4, then the value of x is
1 -1 2 -1 1 3
()2 (2) 4 (3)3 41
3 -3 4
25. If A=|2 -3 4], then adj(adj 4) is
0 -1 1
3 -3 4 6 -6 8 -3 3 4 3 3 4
(1|2 -3 4 2)|4 -6 8 B3)|-2 3 -4 @10 -1 1
0 -1 1 0o -2 2 0o 1 -1 2 -3 4
SUMMARY

(1) Adjoint of a square matrix A4 =Transpose of the cofactor matrix of 4.

(2) A(adj 4)=(adj A)A =|A|I,.

3) A" =Ladid

|4

(4) (i)‘Al‘:ﬁ (ii) (AT)”:(A*)T (iif) (24)" :%A‘l, where A is a non-zero scalar.
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(5) () (4B)' =B"'4"". (i) (4 ' =4

(6) If A4 is a non-singular square matrix of order n, then

1

(i) (adj 4)" = adj(A")=mA (ii) [adj 4= 4"
(iii) adj (adjA)= |4|"” 4 (iv) adj(A4)=A""adj(A4), A is a nonzero scalar
v) |adj (adj A)| = | 4|’ (vi) (adj 4)" =adj(4")

(vii) adj(4B) = (adjB)(adj4)
(7) () 4" == adj 4. (i) A=+

adj 4 |adJ A

adj (adj 4).

8 i) A matrix 4 is orthogonal if 44" = A" A=1
( g

(ii) A matrix 4 is orthogonal if and only if 4 is non-singular and 4" = 4"
(8) Methods to solve the system of linear equations 4AX = B
(i) By matrix inversion method X = A'B, | 4| #0

A A A
ii) By Cramer’stule x=—L,y=—2,z=—2 A#0.
(i) By = A

(ii1) By Gaussian elimination method

9 (1) If p(A4) = p([4]| B]) =number of unknowns, then the system has unique solution.

(i1) If p(A4) = p([A4| B]) < number of unknowns, then the system has infinitely many

solutions.
(ii1) If p(A) # p([4| B]) then the system is inconsistent and has no solution.

(10) The homogenous system of linear equations 4AX =0

(1) has the trivial solution, if |A4|=0.

(ii) has a non trivial solution, if |A4[=0.

| YT T ] ® (. T
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Chapter

2

“Imaginary numbers are a fine and wonderful refuge of the divine spirit
almost an amphibian between being and non-being. ”

- Gottfried Leibniz

Many mathematicians contributed to the full development of complex
numbers. The rules for addition, subtraction, multiplication, and division of
complex numbers were developed by the Italian mathematician Rafael Bombelli.

Rafael Bombelli  He 1s generally regarded as the first person to develop an algebra of complex
(1526-1572) numbers. In honour of his accomplishments, a moon crater was named Bombelli.
Real Life Context
Complex numbers are useful in representing a phenomenon that has two parts varying at the
same time, for instance an alternating current. Engineers, doctors, scientists, vehicle designers and
others who use electromagnetic signals need to use complex numbers for strong signal to reach its
destination. Complex numbers have essential concrete applications in signal processing, control
@ theory, electromagnetism, fluid dynamics, quantum mechanics, cartography, and vibration analysis. ®

@ Learning Objectives

Upon completion of this chapter, students will be able to:
e perform algebraic operations on complex numbers
e plot the complex numbers in Argand plane
e find the conjugate and modulus of a complex number
e find the polar form and Euler form of a complex number

e apply de Moivre theorem to find the 7" roots of complex numbers.

2.1 Introduction to Complex Numbers

Before introducing complex numbers, let us try to answer the question “Whether there exists
a real number whose square is negative?” Let’s look at simple examples to get the answer for it.
Consider the equations 1 and 2.

Equation 1 Equation 2
2
x-1=0 X +1=0
x =41 x =+
x =l x =%?

52

‘ ‘ Chapter 2 Complex Numbers.indd 52 @ 31-01-2020 17:26:47‘ ‘



Y
3
2
' 1
X 2| -1 o 1 2 X
-1
y!
I (x)zxz—l
Fig. 2.1
Equation 1 has two real solutions,
x=-1 and x=1. We know that solving an
equation in x is equivalent to finding the
x-intercepts of a graph of f(x)=x"-1
crosses the x -axis at (—1,0) and (1,0).

3
2
1
o

-1

’

y
f(x)=x2+l

Fig. 2.2
By the same logic, equation 2 has no real
solutions since the graph of f(x)=x"+1 does
not cross the x -axis; we can see this by looking
at the graph of f(x)=x"+1.

This is because, when we square a real number it is impossible to get a negative real number.
If equation 2 has solutions, then we must create an imaginary number as a square root of —1. This

imaginary unit J=1 is denoted by i .The imaginary number i tells us that i> = —1. We can use this fact

to find other powers of i.

2.1.1 Powers of imaginary unit i

We note that, for any integer 7, i" has only four possible values: they correspond to values of

n when divided by 4 leave the remainders 0, 1, 2, and 3.That is when the integern <—4 or n>4,

using division algorithm, n can be written as n

write

=4q+k, 0<k<4, kand gare integers and we

() =" =@" (@) =(@")" () =) () =)

Example 2.1

Simplify the following
() i’ (ii) i "% (iii) i
Solution

0 1) =(0)*" =) =45

102

+i2 () D
n=1

V)yii* it i®

(ii)l-l729 — i1728 l-l :l

Gi) (1) ()" =) )™ = (i) + ()P =1-1=0
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102

(iv) D.i" =(i1 +i +i3+i4)+(z’5 +i® 47 +i8)+~-~+(i97 +i%+ 7 +110°)+1101 +i'

= (z +i° ) (z'+ )+ +(z‘+i2+i3+i4)+i'+i2
= {i+(- )+1}+{i+( —i)+ 1+ i (1) + (i) + 1 i+ (1)
=0+0+---0+i-1
= —1+i (What is this number?)
40x41

(V) l l'2 l'3 .. l'40 :i1+2+3+~~~+40

Result: Sum of four consecutive powers of i is zero. That is " + ™' + ("2 + ("™ =(0 VneZ

Note
(1) Jab =a+/b valid only if at least one of a, b is non-negative.

For example, 6 = J36 = \/ (-4)(-9) = \/ (-4 \/(—9) =(2i)(3i) = 6i° = —6, a contradiction.
Since we have taken \/ (-4)(-9) = \/ (—4) \/ (-9) , we arrived at a contradiction.
Therefore \Jab =a+/b valid only if at least one of a, b is non-negative.

Complex Numbers

(ii) ForyeR, y* >0 — ~ .
II‘\IIIL?E:E:::, Real ﬁgmbers
Therefore, [(-1)(3*) =/(3*)(=1) — —
Numbers Numbers
5i 2 0.25
JEDOD) = oD I - N
iV3 V17
Iy =yt VA +5i "
Natural
EXERCISE 2.1 e
Simplify the following:
12
1‘ 1-1947 + l-1950 2. l'1948 _l'—1869 3‘ l'n
1 2.3 2000 S 50
4. +3 ST ¥ A ARy 6. Zz

1 n=1

2.2 Complex Numbers
We have seen that the equation x> +1=0 does not have a solution in real number system.
In general there are polynomial equations with real coefficient which have no real solution.

We enlarge the real number system so as to accommodate solutions of such polynomial equations.

This has triggered the mathematicians to define complex number system.
In this section, we define
(1) Complex numbers in rectangular form
(i) Argand plane
(111) Algebraic operations on complex numbers
The complex number system is an extension of real number system with imaginary unit .

The imaginary unit i with the propertyi* =1, is combined with two real numbers x and y

by the process of addition and multiplication, we obtain a complex number x +iy. The symbol '+'

is treated as vector addition. It was introduced by Carl Friedrich Gauss (1777-1855).
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2.2.1 Rectangular form

Definition 2.1 (Rectangular form of a complex number)

A complex number is of the form x + iy (or x + yi) , where X and ) are real numbers.
x is called the real part and Y is called the imaginary part of the complex number.

Ifx =0, the complex number is said to be purely imaginary. If y =0, the complex number is
said to be real. Zero is the only number which is at once real and purely imaginary. It is customary to
denote the standard rectangular form of a complex number x+iy as z and we write x =Re(z) and
y=1Im(z). For instance, Re(5-i7) =5 and Im(5-i7)=-7.

The numbers of the form o +if3, B # 0 are called imaginary (non real complex) numbers.

The equality of complex numbers is defined as follows.

Definition 2.2

Two complex numbers z, = x, +iy, and z, = x, +iy, are said to be equal if and only if

Re(z,) =Re(z,) and Im(z,) =Im(z,). Thatis x, =x, and y, =y,. |

For instance, if a +if8 =—7+3i, then « =—7 and 8 =3.

2.2.2 Argand plane

A complex number z = x+iy is uniquely determined by an ordered pair of real numbers (x, y).
The numbers 3—8i, 6 and —4i are equivalent to (3,-8), (6,0), and (0,—4) respectively. In this
way we are able to associate a complex number z = x +iy with a point (x, y) in a coordinate plane.
If we consider x axis as real axis and y axis as imaginary axis to represent a complex number, then
the xy -plane is called complex plane or Argand plane. It is named after the Swiss mathematician Jean
Argand (1768 — 1822).

A complex number is represented not only by a point, but also by a position vector pointing from
the origin to the point. The number, the point, and the vector will all be denoted by the same letter z .
As usual we identify all vectors which can be obtained from each other by parallel displacements. In this
chapter, C denotes the set of all complex numbers. Geometrically, a complex number can be viewed as

either a point in [R? or a vector in the Argand plane.

Im Im Im
Bl ca+if a+if
0] 0( Re 0] Re [9) Re
Complex number Complex number by a position vector Complex number
as a point pointing from the origin to the point as a vector
Fig. 2.3 Fig. 2.4 Fig. 2.5

Illustration 2.1

Here are some complex numbers: 2+i, —1+2i, 3-2i, 0—-2i,3+~-2,-2-3i, cos%ﬂ'sin% ,

and 3+ 0i. Some of them are plotted in Argand plane.
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Im Im
4 4
3 3
-1+2i -142i
2
2+ \2 2+i
]
4 -3 2 10 1 2 3 aRe 3 2 79~J 2 3 4Re
-2 2
. 3-2i
3 3-2i 3
231 23,
Complex numbers as points Complex numbers as vectors
Fig. 2.6 Fig. 2.7

2.2.3 Algebraic operations on complex numbers
In this section, we study the algebraic and geometric structure of the complex number system.
We assume various corresponding properties of real numbers to be known.

(i) Scalar multiplication of complex numbers:
If z=x+iyandk € R, then we define
kz= (kx)+(ky)i .
In particular 0z=0, lz=z and (-1)z=—z.

The diagram below shows & z for k =2, %, —1
Im, 2z Im Im,
z z
z
1
. 27 .
[0 Re 0] 1 Re 0 . Re
k=2 2 -z N
Fig. 2.8 Fig. 2.9 Fig. 2.10

(ii) Addition of complex numbers:

If z, =x, +iy, and z, =x, +iy,, where x,,x,,y,,and y, € R, then we define

z+z, = (x,+iy)+(x, +i,) z,+ 2,
= (x1+x2)+l'(J’1+.V2) Ima (xl+x(:fyl+y2)

z+z, = (x5 +x,)+i(y+y,)- !

We have already seen that vectors are characterized by length

and direction, and that a given vector remains unchanged under
translation. Whenz, =x, +iy, and z,=x,+iy, then by the

parallelogramlaw ofaddition,thesum z, +z, = ()c1 + X, ) + i( Wty )

corresponds to the point(xl +Xy, ¥, + yz) . It also corresponds to a

Fig. 2.11

vector with those coordinates as its components. Hence the points
z,, z,,and z +z, incomplex plane may be obtained vectorially as shown in the adjacent Fig. 2.11.
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(iii) Subtraction of complex numbers

Similarly the difference z, —z, can also be drawn as a position vector whose initial point is

the origin and terminal point is (x, —x,, y, -y, ). We define
z,—z,=z,+(-z,)

= (x1 +iyl)—|-(—x2 —iyz)

= (xl —x2)+i(y1 _y2)~

2172, = (xl_x2)+i(yl_y2)'

2
Fig. 2.12

It is important to note here that the vector representing the difference of the vector z, —z, may

also be drawn joining the end point of z, to the tip of z, instead of the origin. This kind of representation

does not alter the meaning or interpretation of the difference operator. The difference vector joining
the tips of z, and z, is shown in (green) dotted line.

(iv) Multiplication of complex numbers
The multiplication of complex numbers z, and z, is defined as

z,z, = (x, +iy, )(x, +iy,)
= (5, =0 ,) +i(xy, +x,0,)
7,2, = (5%, = ), +i(xy, +X5,0,) .
Although the product of two complex numbers z, and z, is itself a complex number represented

by a vector, that vector lies in the same plane as the vectors z, and z, . Evidently, then, this product is

neither the scalar product nor the vector product used in vector algebra. Im“ z
¥4
Remark l .
Multiplication of complex number z by i 2,
Ifz = x+iy, then 0 T{e
iz = i(x+iy)
' 27 P’z
= —y+ix.
The complex number iz is a rotation of z by 90" or %radians in the Fig. 2.13

counter clockwise direction about the origin. In general, multiplication of a complex number z

by 7 successively gives a 90° counter clockwise rotation successively about the origin.

Illustration 2.2
Let z, =6+7iand z, =3—5i. Then z +2z, and z, —z, are
(1) B-5)+(6+7i) = B+6)+(=5+7)i=9+2i
(6+7i)—(3=5i) = (6-3)+(7—(-5))i=3+12i.

Let z,=2+3i and z, =4+7i. Then z.z, is
(ii) (2+3i)(4+7i) = (2x4-3x7)+i(2x7+3x4)
= (8-21)+(14+12)i=-13+26i .
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Example 2.2
Find the value of the real numbers x and y, if the complex number (2+i)x+(1—i)y+2i—3

and x+(—1+2i)y+1+iare equal

Solution
Let z, = (2+i)x+(1—i)y+2i—3:(2x+y—3)+i(x—y+2)and

Z,

x+(=1+20)y+1+i=(x—y+1)+i(2y+1).
Given that z, = z,.
Therefore (2x+y—3)+i(x—y+2)=(x—y+1)+i(2y+1).
Equating real and imaginary parts separately, gives

2x+y-3 =x—y+l = x+2y=4.

x—y+2 =2y+l = x-3y=-1.
Solving the above equations, gives
x=2 and y=1. -
EXERCISE 2.2

1. Evaluate the following if z=5-2i and w=—-1+3i

1 z+w (i) z—iw (iil) 2z+3w
(iv) zw V) z2° +2zw+w’ (vi) (z+w)2.

2. Given the complex number z = 2 + 3/, represent the complex numbers in Argand diagram.
(1) z,iz,and z+iz (1) z, —iz,and z—iz.

3. Find the values of the real numbers x and y, if the complex numbers
(B-i)x—(2-i)y+2i+5and 2x+(—1+2i)y+3+2iare equal.

2.3 Basic Algebraic Properties of Complex Numbers

The properties of addition and multiplication of complex numbers are the same as for real
numbers. We list here the basic algebraic properties and verify some of them.

2.3.1 Properties of complex numbers

The complex numbers satisfy the following | The complex numbers satisfy the following
properties under addition. properties under multiplication.
(1) Closure property (1) Closure property
For any two complex numbers For any two complex numbers
z, and z,, the sum z +z, z, and z,, the product z, z,
is also a complex number. is also a complex number.
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(i1)) The commutative property

For any two complex numbers
z, and z,

z,tz,=z,+tz.

(i1)) The commutative property

For any two complex numbers
z, and z,

2,2, = Z,Z, .

For any three complex numbers z,, z,, and z,

(iii) The associative property (iii) The associative property
For any three complex numbers For any three complex numbers
Z,,2,,and z, z,,2,,and z,
(z,+2,)+z,=2,+(z, t2,). (212,)2, =2,(2,2,) .
(iv) The additive identity (iv) The multiplicative identity
There exists a complex number There exists a complex number
0=0+0: such that, for every 1=1+0i such that, for every complex
complex number z , number z ,
z+0=0+z=z zZl=lz=z
The complex number 0=0+0; is known The complex number 1 =1+ 0iis known as
as additive identity. multiplicative identity.
(v) The additive inverse (v) The multiplicative inverse
For any nonzero complex numberz,
For every complex number Z there exists there exists a complex number wsuch
a complex number —z such that, that,
z4(-2)=(-z)+z=0. zw=wz=1.
_~is called the additive inverse of z . wis called the multiplicative inverse of z .
w is denoted by z'.
(vi) Distributive property (multiplication distributes over addition)

z,(zy+2z,) =2z, +zz; and (z,+2,)zy = 2,2, + 2,2, .

Let us now prove some of the properties.
Property
The commutative property under addition

For any two complex numbers 2, and z,, we have z, +z, =z, +z,.

Proof

Let z, =x, +iy,, z, =x, +iy,, and x,,x,,y,,and y, eR,

ztz, = (xl+iy1)+(x2+iy2)
= (x+x)+i(y,+»,)

= (%, +x)+i(y,+ )
)

(x2 +iy2)+(x1 +1iy,
22 +Zl .

Property
Inverse Property under multiplication
Prove that the multiplicative inverse of a nonzero complex number z = x +iy is

—)

x2+y

7t

2

59
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Proof
The multiplicative inverse is less obvious than the additive one.
Let z~' = u +iv be the inverse of z = x+iy

We have zz™' =1
Thatis (x+iy)(u+iv) =1
(xu—yv)+i(xv+uy) =1+i0

Equating real and imaginary parts we get
xu—yv = landxv+uy=0.

Solving the above system of simultaneous equations in # and v

we get u=———and v= 2_y > (s zis non-zero=> x* +y° > 0)
X +y X +y
If z=x+iy,then z' = 2x Ty — . (v z 'is not defined when z =0). [

x*+y x4y
1

Note that the above example shows the existence of z~ of the complex number z . To compute

. . . a1
the inverse of a given complex number, we conveniently usez™' =—. If z, and z, are two complex
z

1 z
numbers where z, = 0, then the product of z, and — is denoted by —. Other properties can be
Z Z

verified in a similar manner. In the next section, we define the conjugate of a complex number. It
would help us to find the inverse of a complex number easily.

Complex numbers obey the laws of indices

z

m
() 2"z =z"" (i) = o0 Gi) (27) =27 (V) (25) =272
z

EXERCISE 2.3
1. If z, =1-3i, z,=-4i,and z; =35, show that
() (z,+z2,)+z,=2,+(z, +z,) (ii) (z,2,)z,=2,(2,2,).
2.1f z, =3, z, =-Ti,and z; =5+4i, show that
(1) z,(z, +z,) =z,z, + 2,24 (1) (z,+2z,))z, =22, + 2,2,

3.If zy=2+5i, z,=-3—-4i, and z,=1+i, find the additive and multiplicative inverse of

z,, Z,,and z.

2.4 Conjugate of a Complex Number
In this section, we study about conjugate of a complex number, its geometric representation, and
properties with suitable examples.

| Definition 2.3

The conjugate of the complex number x + iy is defined as the complex number x — iy.
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The complex conjugate of z is denoted by z. To get the conjugate of the complex number z ,

simply changei by —iin z. For instance 2—5i is the conjugate of 2+ 5i.The product of a complex

number with its conjugate is a real number.
. . . . 2 . \2 2 2
For instance, (1) (x+ ly)(x—zy) =X —(zy) =x"+y
(if) (1+3i)(1-3i)=(1)" = (3i)" =1+9=10.
Geometrically, the conjugate of z is obtained by reflecting z on the real axis.

2.4.1 Geometrical representation of conjugate of a complex number
Im

Im
243; 4 4 |
° 3 3 xJ..”y
2 2
! 1 1 :
4-3 21 o1 2 3 7 Re _4-3 2.1 0N 2 3 5 Re
) -1
3 2 .
® - _ X~
-2-3i 4 3 v
- -4
conjugate of a complex number conjugate of a complex number
Fig. 2.14 Fig. 2.15

Note

Two complex numbers x+iy and x—iy are conjugates to each other. The conjugate is useful
in division of complex numbers. The complex number can be replaced with a real number in the
denominator by multiplying the numerator and denominator by the conjugate of the denominator.
This process is similar to rationalising the denominator to remove surds.

2.4.2 Properties of Complex Conjugates

() z+2,=2+z (6) Im(z) ===

Q) z,-2z,=2,-2, (7) (z_”) = (;)n , where nis an integer

() zz, =22 (8) zisrealifand only if z=2

4) (ij = ?, z,#0 (9) z is purely imaginary if and only if z =—Z
4 4

(5) Re(@) =27 (10) T=z

Let us verify some of the properties.
Property

For any two complex numbers z, and z,, we have z +z,=2z+z,.
Proof
Let z, =x,+iy,, z, =x, +iy,, and x,,x,,y,,and y, €R

z+z, = (x+iy)+(x, +i,)
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= (x1+x2)+i(y1+J’2)=(x1+x2)_i(J’1+J’2)

(xl _iy1)+(x2 _iyz)

= Zl+22.

It can be generalized by means of mathematical induction to sums involving any finite number of

terms: z +z,+z,+-z, =z +z,+z;+ -+ 2z, . ]

Property
z,z, =z, 2z, where x,,x,,y,,andy, eR

Proof

Let z = x,+iy, and z, =x, +iy,.

('xl +iJ’1)(x2 +iJ’2) = (xlxz _J’1Y2)+i(x1J’2 +x2)’1)-

Then, z,z,

Therefore, z,z, = (x1x2 _y1y2)+i(x1y2 +x2y1) = (xlxz _ylyZ)_i(xlyZ +x2y1)a

and z;z, = (xl —1iy )(xz _iyz) = (x1x2 _y1y2)_i(x1y2 +X0 ) .
Therefore, Z = Z,Z,. [ |
Property
A complex number z is purely imaginary if and only if z=—Zz
Proof
Let z = x+iy. Then by definition z = x—iy
Therefore, z = -z
= x+iy = —(x—1iy)
= 2x = 0 & x=0

< z is purely imaginary.
Similarly, we can verify the other properties of conjugate of complex numbers.

Example 2.3

+4i

Write 53 oy in the x+iy form, hence find its real and imaginary parts.
—12i

Solution

To find the real and imaginary parts of 53 +1421' , first it should be expressed in the rectangular form

—141

x + iy .To simplify the quotient of two complex numbers, multiply the numerator and denominator by

the conjugate of the denominator to eliminate 7 in the denominator.
3+4i  (3+4i)(5+12i)
5-12i  (5-12i)(5+12i)

_ (15-48)+(20+36)i

52 +12°
_—33+5&_ﬂ_33+i56
169 169 169
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Therefore, Sl = - 33 +i 56 . This 1s in the x+iy form.
5-12i 169
Hence real part is _33 and imaginary part is 6
P 169 ginary p . -
Example 2.4
1+i) (1-iY
Simplify | — | —| —— | . into rectangular form
1-i I+i
Solution
i I+i)(1+i) 1+2i-1 2i
We consider — :( )( _)= : =—l=i,
—i (1—1)(1+1) 1+1 2
AL
1+ 1-i i
3 A3
Therefore, iy (1= = (i) =—i—i=-2i
1-1i 1-i ]
Example 2.5
z+3  1+4i .
If > = , find the complex number z in the rectangular form
z—5i
Solution
© z+3  1+4i ®
We have D =
z—5i 2
= 2(z+3) = (1+4i)(z-5i)
= 2246 = (1+4i)z+20-5i
= (2—1—41‘)2 =20-5i-6
—5i (14-50)(1+4i j
o 14 5i_ (14-5i)(1+ 1)234+511:2+3l,.
1-4i  (1-4i)(1+4) 17 u
Example 2.6
If z, =3-2i and z, =6+4i, find 2 inthe rectangular form
4
Solution
Using the given value for z and z, the value of a2 3_21_ = 3_21'><6_4l'
zZ, 6+4i 6+4i 6-4i
_ (18=8)+i(-12-12) 10-24/ _ 10 24
6> +4° 52 52 52
_ 55,
26 13 u
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Example 2.7
Findz™', if z=(2+3i)(1-i).

Solution
We have z = (2+3i)(1-

i)=(2+3)+(3-2)i=5+i

41 1
=z =—-=—.
z S5+i
Multiplying the numerator and denominator by the conjugate of the denominator, we get
(=) 5-i s 1
(5+i)(5-i) 5°+1° 26 26
0 5 .1
Z =i
T 26 26 [ |
Example 2.8
A5 .\I5
Show that (i) <2+i\/§)10 +(2—ix/§)mis real and (i1) (19+?’j —( 8+l'j is purely imaginary.
5-3i 1+2i
Solution
10 10
(1) Let z:(2+i\/§) +<2—z\/§) . Then, we get
2:(2+i\6)10+(2—z\@)]0
:(2+z\/§)lo+(2—i\/§)lo (. z+z, Z_1+22) ®
10 10 —n
:(2+i\/§) +(2—i\/§) ((z)z(z))
:(2—1 3)10+(2+i\/§)m:z
z = z = zisreal.
A\ 15
(ii) Let = — (19+91j (8+1‘].
5-3i 1+2i
Here, 12791 _ _ (19+90)(5+3i)
5-3i  (5-30)(5+3i)
_(95-27)+i(45+57)  68+102i
- 5 432 34
= 243i, (1)
ond _ (8+i)(1-2)
1+2i (1+21)(1—2i)
_(8+2)+i(1-16) 10-15i
o P+22 5
=2-3i. (2)
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Now z

19+9)° (8+i)°
5-3i 1+2i

= z=(2+3) —(2-3i)". (by (1) and (2))

Then by definition, z

((z +3)° —(2—31-)”)

15 15
= (2 +3i ) — (2 —-3i ) (using properties of conjugates)

_ (2—31')15 —(2+3i)15 =—((2+3i)15 —(2—31')15)

= z =-z.

1949\ (8+i ). o
Therefore, z = %)\ is purely imaginary.
—3i i

EXERCISE 2.4

1. Write the following in the rectangular form:
® . ®
10-5i -
(111) 3i+——
6+2i 2—i
2. If z=x+1iy, find the following in rectangular form.

(1) 5+90)+(2—-4i) (11)

z

G)Rﬁ[l] (i) Re(iZ) (iii) Im(3z + 47 — 4i)

3. If zy =2—iand z, = -4 +3i, find the inverse of z,z,and 4,
2

4. The complex numbers u,v, and w are related by 1 = 1 + L .

u vow
If v=3-4i and w=4+3i, find u in rectangular form.

5. Prove the following properties:
z+z z—z

and Im(z) =

2 ) 2i

(1) zisrealifand only if z=Z  (i1) Re(z) =

6. Find the least value of the positive integern for which (\/5 +i )n
(1) real (i1) purely imaginary.

7. Show that (i) (2 + i\/g)lo —(2 - z'\/g)m is purely imaginary

(19707 (20-5iY"
(i1) + is real.
9+i 7—6i
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2.5 Modulus of a Complex Number Im}  P(x, y)
Just as the absolute value of a real number measures the distance v :

of that number from origin along the real number line, the modulus n <

of a complex number measures the distance of that number from the & y

origin in the complex plane. Observe that the length of the line from
the origin along the radial line to z = x +iy is simply the hypotenuse .
of a right triangle, with one side of length x and the other side of 0 T M Re
length y.

Fig. 2.16

Definition 2.4

,is defined by |z| = \/x* + y?

If z = x +iy,then the modulus of 7, denoted by |z

For instance (i) |i|:\/02 +17 =1
(i) | -12i] = /0* +(-12)" =12
(i) |12 -5 |= /12> +(=5)" =169 =13
Note

If z=x+iy, then z=x—iy, then zz =(x+iy)(x—iy) =(x)2 —(l'y)2 =x +y2=|z|2.

|zf=zZ.

2.5.1 Properties of Modulus of a complex number

() | =[ ) |2 H, z, %0
L 1%
(2) |zl+22|S|zl|+|zz|(Triangle inequality) (6) " =|z",wherenis an integer
3) |lez|:|zl||zz| (7) Re(z)£|z|
(4) |ZI—ZZ|ZHZI|—|22” (8) Im(z)é|z|

Let us prove some of the properties.

Property Triangle inequality
For any two complex numbers z, and z,, we have |z, +z,|<|z,|+|z,].

Proof
Using  |z,+2[ = (5 +2)(z +2,) (rlzP=z7)
= (z,+2,)(z, +%,) (-5 ¥2,=%,+7))
= 2z, +(z,2, + 7,2,) + 2,2,
= z,Z, +(2122 +ﬁ)+2222 ('-'522)
XII - Mathematics 66

‘ ‘ Chapter 2 Complex Numbers.indd 66 @ 31-01-2020 17:30:43‘ ‘



| YT T ] ® (. T

= |z, " +2Re(z,Z,)+]| z, (- 2Re(z)=z+72)
< [l + 2z =l (: Re(2) <)z
= |2 +2]z| |z]+ |z (22 2 |5 2 ||z, | and | |5 Z|)

= |Zl+Zz|2 < (|Zl|+|zz|)2
:>|Zl+zz| < |Zl|+|Zz|.

Geometrical interpretation

Now consider the triangle shown in figure with vertices O, z, 1, & B 2l e ,
or z,,andz, +z, .We know from geometry that the length of the side 2 /
of the triangle corresponding to the vector z, +z, cannot be greater

than the sum of the lengths of the remaining two sides. This is the
reason for calling the property as "Triangle Inequality".

It can be generalized by means of mathematical induction to finite
number of terms:

Fig. 2.17

|Zl+22+z3+---+zn S|Zl|+|zz|+|z3|+---+|z”| for n=2,3,---.

Property The distance between the two points z, and z, in complex planeis |z, -z, |

If z, =x, +iy,and z, = x, +iy,, then

|Z] _Zz| = ‘(x] _x2)+(y1 _yz)i‘

= \/(xl _x2)2+(y1 _y2)2 .

Remark
The distance between the two points z, and z, in complex plane is |z1 - z2| .

If we consider origin, z, and z, as vertices of a triangle, by the similar argument we have
Im
|2, =2, <[z, | +|z,]

||zl|—|zz||£|z1 +zz|£|zl|+|zz| and

||z]|—|22||S|Z1 —Zz| S|Zl|+|22| .

Fig. 2.18 u

Property Modulus of the product is equal to product of the moduli.

For any two complex numbers z, and z, , we have |zlzz| = |zl||zz| .

Proof
2 —
We have |le2| = (z,2,)(z,z,) (o |zl=z2)

- (Zl)(ZZ)(Z_I)(Z_Z) ( 2124 :Z_IZ_Z)
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= (le_l)(zzz_z)=|zl|2 |Zz|2 (by commutativity 222_1 = z_lzz)

Therefore, zlzz| = |zl||zz| .
Note u
It can be generalized by means of mathematical induction to any finite number of terms:
|lezz3--'zn :|Zl||22||z3|"'zn

That is the modulus value of a product of complex numbers is equal to the product of the moduli
of complex numbers.

Similarly we can prove the other properties of modulus of a complex number.
Example 2.9

If z, =3+4i, z,=5-12i, and z, :6+8i,ﬁnd|z1 212,05 |23]5 |2, + 2,|, |2, — 24|, and |Z1 +Z3|.
Solution
Using the given values for z, z, and z, we get |Zl| = |3+4i| =3 +4 =5
|z,| = [5-12i] = /5 +(-12)* =13
|z,] = [6+8i]=V6* +8 =10
|2, +2,| = [(3+4i)+(5-12i)| =[8-8i| = /128 =82
|z, - 25| = |(5-12i) = (6 +8i)| = |-1-20i| = /401
|z, + 25| = |(3+4i)+(6+8i)| =[9+12i| =+/225 =15
® Note that the triangle inequality is satisfied in all the cases. ®
|z, + z,| =|z,| +|z,| =15 (why?)
|
Example 2.10
. . | 2410 o [ A .. |i(2+i0)
Find the following (i) | (i) ‘(1+1)(2+3Z)(4l—3)‘ (iii) -
—1+2i (1+17)
Solution
. H 2 2
0 ‘ 2+z'| _ |2+z|. _ V2% +1 L ﬂ:m’ 2 40
—1+21| |—1+21| /(_1)2 192 zZ, |Z2
(i) |ID@+30i-3)| =[] [2+31] [4i-3 (" |zz2] =12]2]|2])
= [1+4] |2+ 3] |-3+4i (~12l=]7))
_ (Jf e )(Jz2 13 )(\/(—3)2 42 )
- (V2)(VI3)(+25) = 5426
3
i i+iy| _ i@+ 1+ =(\/4+1) ( a|_lal ¢oj
A+ | Jaid el (\5)2 AN
3
(5) 55
= = . .
2 2
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Example 2.11
Which one of the points i, =2+, and 3 is farthest from the origin?

Solution
The distance between origin to z=i,—2+i, and 3 are I{H
|z| = [i]=1
-2+ ,
|z| = |2+i|= (-2 +1* =5 : i
|z| = [3]=3 — ‘ =

Since 1<+/5 <3, the farthest point from the origin is 3.
Fig. 2.19 m

Example 2.12
If z,, z,, and z, are complex numbers such that |Z1| = |zz| = |z3| = |z1 +2z,+z,|=1,

1 1 1
find the value of | —+—+—.
z, z, 2z,
Solution
Since, |z,| = |z,|=]z|=1,
2 _ — —
|Zl| =1=zz =1z, =1=z7 =1,and |z, [=1= 2,7, =1
_ 1 _ 1 _ 1
Therefore, z, = —,z, =—, and z, = — and hence
2 2, 23
1 1 1 - — —
—t+—+—| =z, +z,+2z,
2L %5 &
= |ZI+ZZ+Z3|=|Zl+Z2+Z3 =1. -

Example 2.13
If || =2 show that 3<|z+3+4i|<7

Im
Solution o,
3 Re
|z+3+4i|<|z|+[3+4i|=2+5=7 /
|z+3+4i|<7 (1) ?
|2+ 3+4i| | |2| |3+ 4i]|=|2-5| =3
|z+3+4i[>3 2)
From (1) and (2), we get 3<|z+3+4i[<7. Fig. 2.20 -
Note
To find the lower bound and upper bound use |z|~|z,||<|z + 2, <|z]+|z,]-
69 Complex Numbers
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Example 2.14

NE) 1

Show that the points 1, _?1 +i 7,

Solution
It is enough to prove that the sides of the triangle are equal.

3
and — —17 are the vertices of an equilateral triangle.

-1 3 -1 3
Let z, =1, z, =—+i§,andz3:?_l‘§_ Im
: . -1 43 4
The length of the sides of the triangles are B 17 \
-1 3 3 243
2 2 2 2 4 4 2 5 >
/ Re
o 2 2 2 2 2 '
Fig. 2.21
-1..\3 -3 f /
z,—Z —ti— |-1l|=|——— f
2= 2 2]
Since the sides are equal, the given points form an equilateral triangle. [ |
Example 2.15
Let z,2,, and z; be complex numbers such that |z,|=|z,|=|z,|=r>0andz +z, +z, #0.
®
Prove that |lez M L B | =
z,+2,+z, ‘
Solution
Given that |Zl| =|Z|—|Z|—r:>ZIE:ZE:zE:r2
2 2 2
r r r
=z =", =", =T
Z Z, Z3
ot o
Therefore z +z,+z; = —+—+—
Z, Z, 1z,
z(zz+zz+zz
=r
212,24
Ltz tz| = || PR AR AL (" Z1+22=2,77)
212,23
z.Z,.+z.z,+2,Z _
2|23 143 12| ('-'|Z|:|Z|and|212223|:|Zl||22||23|)
|Zl||Zz||Z3|
Z+z,+z) =17 22 +Zf3 + 45 = [222; +212, + 2,2

r r
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|Z2Z3 +2z,z, + le2|

=r. (giventhat z, +z, +z, #0)
|z, + 2, + 2,
Z,Z,+ZZ +ZZ|
Thus, R e I
z,+z,+z, ‘ |

Example 2.16
Show that the equation z* =Z has four solutions.

Solution
We have, 2t =72,
= 12f =]
= lzl(|z|-1) =0,
= |z|=0,0r|z|=1.
. . _ _ 1
|z]=0 = z=01isasolution, |z|] =1 =2 zz=1=Z=—.
z
: 2 — 2 1 3
Given z° =2z = z0 = - = z =1.
z
It has 3 non-zero solutions. Hence including zero solution, there are four solutions. L

2.5.2 Square roots of a complex number
Let the square root ofa+ib be x+iy
Thatis Va+ib = x+iy where x,yeR
a+ib = (x+iy)2 =x"—y* +i2xy

Equating real and imaginary parts, we get
2 2

x"—y" =aand2xy=>b
(x2 +y2)2 = (xz —yz)2 +4x’y* =a’ + b
x*+y° =+a’ +b* ,since x” + )’ is positive
Solving x*—3* = a and x> +y° =+a’ +b* , we get

NJa*+b* +a Na*+b* —a
e

Since 2xy =b it is clear that both x and y will have the same sign when b is positive, and x

X

and y have different signs when b is negative.

Therefore Va+ib = +[,/|Z|%+i b |Z|—_aJ , where b= 0. ( Re(Z)£|z|)

B\ 2

Formula for finding square root of a complex number

Na+ib +[1/|Z|%+iﬁ MT_GJ ,where z=a+iband b=0.
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Note

If b is negative, %: —1, x and y have different signs.
. . b .
If b is positive, a =1, x and y have same sign.

Example 2.17
Find the square root of 6 —8i .

Solution

We compute |6—8i| = ,/62+(—8)2 =10

and applying the formula for square root, we get

10

10+6 10-6 b
_ R =+ —1 '.'b i t ,_=_1
6—8i (\/ 5 z\/ 5 J ( is negative b| )

= +(\8-i2)
- J_r(zx/i—iﬁ). m

EXERCISE 2.5

. Find the modulus of the following complex numbers

2i 2—i 1-2i

(1) (i) —+ (iii) (1-17)" (iv) 2i(3-4i)(4-3i).
3+4i 1+i 1-i
. For any two complex numbers z, and z,, such that |Z1| = |22| =1 and z,z, # —1, then show that
2% s a real number.
1+2zz,
. Which one of the points10—8i, 11+ 6i is closest tol+i .
If | z|=3, show that 7 <|z+6—8i| <13.
If |2] =1, show that 2<|2* —3[< 4.
If | z| =2, show that 8 <|z+648i| <12.
. If z,, z, , and z, are three complex numbers such that |z,|=1, |z, ‘ =2,|z,|=3 and
|z, +z, +2,| =1, show that |9zlz2 +4zz, + zzz3| =6.
. If the area of the triangle formed by the vertices z, iz, and z+iz is 50 square units, find the
value of |z|
. Show that the equation z’ +2z =0 has five solutions.
Find the square roots of (i) 4+3i (i) —6+8i (iii)) -5—-12i.
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2.6 Geometry and Locus of Complex Numbers

In this section let us study the geometrical interpretation of complex number z in complex plane
and the locus of z in Cartesian form.
Example 2.18
Given the complex number z =3+ 2/, represent the complex numbers z, iz, and z+iz in

one Argand plane. Show that these complex numbers form the vertices of an isosceles right
triangle.

Solution Im

Given that z=3+2i. 5

1
Therefore, iz =i(3+2i)=-2+3i C‘\<5 ;

z+iz=(3420)+i(3+2i)=1+5i i 2|}

Let 4,B, and C be z, z+iz, and iz respectively. -
) i 4 -3 -2 -10| 1 2 3 4Re
AB* =|(z+iz)-z| =|-2+3i =13 X

BC? =|iz—(z+iz)[ =]-3-2if =13

-2
CA* =z iz =[5-1f =26 Fig. 2.22
Since AB* +BC* =CA* and AB = BC, A4BC is an isosceles right triangle. L

Definition 2.5 (circle)

A circle is defined as the locus of a point which moves in a plane such that its distance from a
fixed point in that plane is always a constant. The fixed point is the centre and the constant distant
is the radius of the circle.

Equation of Complex Form of a Circle

. . . Imyj
The locus of z that satisfies the equation |z—z,|=r where z, is z

a fixed complex number and r is a fixed positive real number consists

of all points z whose distance from z; is r.

Therefore |z—zo| =r 1s the complex form of the equation of a

circle. (see Fig. 2.23)

(i) |z—z,| <r represents the points interior of the circle. 0 Re

(i1) |z - zo| > r represents the points exterior of the circle. Fig. 2.23

Ilustration 2.3
lzZ|=r =x*+y* =r
= x° +y> =77, represents a circle centre at the origin with radius 7 units.
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Example 2.19

Show that |3z -5+ i| =4 represents a circle, and, find its centre and radius.

Solution

The given equation [3z—5+i| = 4 can be written as

e
=4 33

It is of the form|z - zo| =r and so it represents a circle,

4

5—i

Z—_
3

3

whose centre and radius are (%, —%j and % respectively.

Example 2.20

Im |

Show that|z +2-i | < 2 represents interior points of a circle. Find its centre and radius.

Solution
Consider the equation |z+2—i|=2.

This can be written as |z —(—2+i)|=2.

The above equation represents the circle with centre z, =-2+i and

radius » =2. Therefore |Z +2- i| < 2 represents all points inside the

circle with centre at —2 +7and radius 2 as shown in figure.

Example 2.21

Fig. 2.24 -
Im
r=2
Z =—2+i
O Re
Fig. 2.25 | @

Obtain the Cartesian form of the locus of z in each of the following cases.

(i) |2|=|z -] (i) |2z -3-i|=3
Solution
(1) we have |z| = |z—i|

= |x+iy| = |x+iy—i|

J +(y-1)

= xX+)y =x"+)y" -2y+l

= \/x2+y2

Il
=

= 2y-1
(ii) we have [2z-3-i] =3
2(x+iy)-3-i = 3.

Squaring on both sides, we get
(2x-3)+(2y-1)i =9

= (2x-3)+(2y-1)" =9

—  4x°+4y* —12x—4y+1 = 0, the locus of z in Cartesian form.
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EXERCISE 2.6

z—4i
z+4i

=1

1. If z = x+iy is a complex number such that

show that the locus of z is real axis.
2z+1
iz+1

2. If z=x+iy is a complex number such that Im( j =0, show that the locus of z is

2x° +2y" +x-2y=0.
3. Obtain the Cartesian form of the locus of z = x+iy in each of the following cases:
@) [Re(iz)]2 =3 (i) Im[(1-D)z+1]=0  (iii) |z +i]=|z -1 (v) z=z".
4. Show that the following equations represent a circle, and, find its centre and radius.
(i) |z-2-i=3 (i) [2z +2-4i|=2 (iii) [3z—6+12i|=38.
5. Obtain the Cartesian equation for the locus of z = x+iy in each of the following cases:

(i) |z-4/=16 (ii) |z -4 —|]z-1]" =16.

2.7 Polar and Euler form of a Complex Number

When performing addition and subtraction of complex numbers, we use rectangular form. This is
because we just add real parts and add imaginary parts; or subtract real parts, and subtract imaginary
parts. When performing multiplication or finding powers or roots of complex numbers, use an alternate
form namely, polar form, because it is easier to compute in polar form than in rectangular form.

® 2.7.1 Polar form of a complex number ®

Polar coordinates form another set of parameters that characterize the vector from the origin to
the point z = x + iy, with magnitude and direction. The polar coordinate system consists of a fixed point

O called the pole and the horizontal half line emerging from the pole called the initial line (polar axis). If
r is the distance from the pole to a point P and @ is an angle of inclination measured from the initial line
in the counter clockwise direction to the line OP, then r and @ of the ordered pair (r,0) are called the
polar coordinates of P. Superimposing this polar coordinate system on the rectangular coordinate
system, as shown in diagram, leads to

) P(x) P(x
X ’\]
X% * 3
{ 7 'y =rsinf
0 o :
0 X 0 0 x=rcos® M
) ) Superimpose polar coordinates
Rectangular coordinates Polar coordinates on rectangular coordinates
Fig. 2.26 Fig. 2.27 Fig. 2.28
x = rcosf (1)
y = rsin6. ..(2)

Any non-zero complex number z = x + iy can be expressed asz =rcos6 +i rsin6.
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Definition 2.6

Let » and 6@ be polar coordinates of the point P(x,y)that corresponds to a non-zero

complex number z = x +iy . The polar form or trigonometric form of a complex number P is

z=r(cosO +isinf).

For convenience, we can write polar form as
z=x+iy= r(cos@ +isin0) =rcis®.
The value 7 represents the absolute value or modulus of the complex number z . The angle 6 is

called the argument or amplitude of the complex number z denoted by 6 = arg (z)

(1) If z=0, the argument 6 is undefined; and so it is understood that z = 0whenever polar
coordinates are used.
(i1) If the complex number z = x+iyhas polar coordinates(7,60), its conjugate z = x—iy has

polar coordinates (r,—8).
. . . . . 2 2
Squaring and adding (1) and (2), and taking square root, the value of » is given by r = |z| =\x"+y°.

rsin0 Y = tan0 :Z.
rcos@ x X

Case (i) Thereal number @ represents the angle, measured in radians, that z makes with the positive real
axis when z is interpreted as a radius vector. The angle @ has an infinitely

many possible values, including negative ones that differ by integral Imj
multiples of 2. Those values can be determined from the equation r

Dividing (2) by (1),
z=r(cosf+isinf)

tan® = 2 where the quadrant containing the point corresponding to z / \
0

X
must be specified. Each value of 6 is called an argument of z, and the Q_/
set of all such values is obtained by adding multiple of 27 to 0, and it is

denoted by arg z.
Case (ii) There is a unique value of 6 which satisfies the condition —7 <0 <7 .
This value is called a principal value of @ or principal argument of z
and is denoted by Arg z.
Note that, —nm<Arg(z)<m or -m<0<nm
Principal Argument of a complex number
I-Quadrant II-Quadrant I11-Quadrant IV-Quadrant
3 0=« YN o= 1 y“@:a—ﬂ’ ) O=-a
z Z
o a < 0
. N ol ., .
> ) 5 >
o X X a /9 X o X
z z
0=« O=r—o O=o—-1 =—a
Fig. 2.30 Fig. 2.31 Fig. 2.32 Fig. 2.33
XII - Mathematics 76



| YT T ] ® (. T

The capital A is important here to distinguish the principal value from the general value.

Y

X

Evidently, in practice to find the principal angle 6, we usually compute o = tan™ and adjust

for the quadrant problem by adding or subtracting o with 7 appropriately.

argz = Arg z + 2nm, neZ.

Some of the properties of arguments are

(1) arg(z z,)=argz +argz,

(2) arg[ij =argz, —argz,
z

2
3) arg(z")=n arg z

(4) The alternate forms of cosf +isinf are cos(2kmw+0)+isin(2Qkw+0), k €Z.

For instance the principal argument and argument of 1,i,—1, and —i are shown below:-

z 1 i -1 =i

D,
Y

Imi .
. a
Arg(z) 0 2 T > _1!
=i

arg z 2nm 2nm+ - 2nm+T 2nm—— .
2 2 Fig. 2.34
® : ®
Ilustration
Plot the following complex numbers in complex plane Im
2w |
. T .. T O U 2
(1) 5 coszﬂsmzj //m/c\S /\\\\ \-\5c\1s4
/ AN \
/ .
(ii) 4 cosz—ﬂ+isin2—7r P Vo
| L INA
3 3 | \ ' \ T T2 /3 J4 }5=
by - ¥ 2cis L e
St .. -5m \ GRS |~ 6
(iii) 3| cos——+isin—— \ / /
6 6 N N Ry
/
\\\\ \/////
(iv) 2| cos——isin— |. T
6 6 Fig. 2.35

2.7.2 Euler’s Form of the complex number

The following identity is known as Euler’s formula
¢’ =cosO+isinf
Euler formula gives the polar form z = re”
Note

When performing multiplication or finding powers or roots of complex numbers, Euler form
can also be used.
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Example 2.22
Find the modulus and principal argument of the following complex numbers.

(i) 3 +i (i) —/3 +i (i) —~/3 —i (iv)\/3 —i

Solution
(i) B+i my
2
Modulus = /x* +y* = (\/5) +17 =/3+1=2 g ,L B+i
! /a = 9
-1y a1l oz o F
a =tan'|=|=tan' (=== 1 i Re
X 3 6 ’ i
Since the complex number J3+i lies in the first quadrant, 17
o Fig. 2.36
has the principal value
0=a="2.
Therefore, the modulus and principal argument of V3 +i are 2and % respectively.
(i) —v3+i
Im )
Modulus= 2 and B e
, B 0 B
a =tan' |2 =tam‘li=Z i \947(13
X 3 6 0 i Re
Since the complex number —3+i lies in the second quadrant |
has the principal value Fig. 2.37

O=n-a=n-21 =5—7T.
6 6

Therefore the modulus and principal argument of —3+i are 2 and 5%Trespectively.

(iif) —3-i e

r=2 andazz.
6

Since the complex number — J3 =i lies in the third quadrant,

has the principal value,
4 Sm

O=0a-n1=——nm=-—.
6 6

Therefore, the modulus and principal argument of —J3—iare 2 and —S?ﬂ respectively.

(iv) 3 —i Im ---------

r=2 andazz.
6

Since the complex number lies in the fourth quadrant,
has the principal value,

0=-a =-2
6
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Therefore, the modulus and principal argument of

\/g—i are 2and—%.

In all the four cases, modulus are

which the complex number lies.

equal, but the arguments are depending on the quadrant in

|
Example 2.23
Represent the complex number (i)—1—-i (i1) 1+ J3 in polar form.
Solution
(1) Let —1—-i = r(cosO +isin0)
We have 7 = x> +1> =P +1* =4/1+1=42
a =tan' | =tan'1=2.
x 4
Since the complex number —1—i lies in the third quadrant, it has the principal value,
T 3n
0 =a-nm=——71="—
4 4
Therefore, —-1-i = \/5 (cos [—%j +isin (——D
® =\/§(cos3—n—isin3—nj.
4 4
. 3r .. (37
—1-i = /2] cos T+2k7r —isin T+2k7£ s kel
Note
Depending upon the various values of k, we get various alternative polar forms.
(i) 1+i\/3 .
r o= |Z|= 12+(\/§) =2
1 v
0 = tan™' —) ==
(ﬁ 3
Hence arg(z) = g .
Therefore, the polar form of 1+i+/3 can be written as
1+i\3 = 2(cos£+isin£j
3 3
= 2(C0$(%+2kﬂ'j+ isin(%+2knD, keZ.
|
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Example 2.24
Find the principal argument Arg z , when z = -2 .
1+i3

Solution

2
= ar
g1+i\/§

= arg(—2)—arg(1+i\/§) ('.'arg[

feom (B (£

3 3

This implies that one of the values of arg z is 2% .

arg z
A

2

3
j=argz1 —argz,) A\ x
z B 2 3
0

Since 2T lies between —z and 7, the principal argument Arg z is 2%

Properties of polar form

7

Property 1 If z=r(cos6 +isin6),then z™ :l(cosé—isinQ).

Proof
1

r(cos@+isin@)

(cosO—isin@)

L1
z @ =—=
z

r(cosO+isind)(cosd —isinb)

o

B (cosO—isin@)

r(cos2 0 +sin” 9)
(

-1 ..
z = cosO—lsmG).

N | =

Property 2
Ifz, =1 (cos6, +isin6, ) and z, =r,(cos6, +isinb, ),

then z,z, = K1, (cos(6, +6,)+isin(6, +6,)).

Proof
z, = 1;(cos, +isin6, ) and

z, =r,(cos0, +isinb,)
= z,z, = 1,(cos B, +isin6,)r, (cos6, +isin0,)
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Fig. 2.40
[ |
z
Im @
N
0 -
S >
0 0 Re
i 2—1
T
Fig. 2.41
|
Im‘
A
22 r, *Z
A %)) VW S
%%“'//’ Y 9
% ,I/ el\\ 2\ =
Zl Zl‘//O Re
° r\YZ
Fig. 2.42
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= nr, ((cos@1 cos 6, -sin 0, sin 6, )+i(sin 6, cos b, +sin 6, cos 91))

2,2, = 1y (cos(6, +6,)+isin(6, +6,)).

|
Note
arg(zz,) = 6,+0, =arg(z,)+arg(z,).
Property 3
Ifz, =7, (cosb, +isin6,)and z, = r, (cos B, +isinb, ), then 4 :i[cos(Ql —0,)+isin(6,-6,)].
Z, h
Proof: Using the polar form of z and z,, we have
z, _ 1(cos6, +isin6,) Im
z, 1 (cosd, +isin6,) N
4/\.\,\\« %a
_ 1;(cos, +isin@,)(cos O, —isin6,) by & \
1, (cos@, +isin6, )(cos, —isin6,) . R
2 \ %
7, (cos 6, cos B, +sin, sin6, )+i(sind, cosd, —sinb, cosb,) N
A cos’ 0 +sin’ 6 9) R:
z,  h .
— =—(cos(0,-0,)+isin(6,-0,)). i
& z, "2( ( 1 2) ( 1 2)) Fig. 2.43 - ®

Note
z
arg Z—lj =0,-0, =arg(z)—arg(z,).
2
Example 2.25
. 3 T .. T Sm .. 5m).
Find the product > cosg +i smg -6 cos? +i sm? in rectangular from.

Solution:

The Productg cos£+isin£ -6 (:oss—7r+z'sin5—7r
2 3 3 6 6

o)
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= 9[—? - é} = —# - % , Which is in rectangular form.

Example 2.26
( or . . 971)
2| cos—+isin—
4 4

(—371) . (—3ﬂj
4| cos| — |+isin| ——
2 2
Solution

or .. 97

2| cos— +isin—

4 4
—3r .. (3m
4| cos| — |+isin| —
2 2

Find the quotient

in rectangular form.

N | —
N

73 (—37[] . (97 (—?mj

cos| ——| — | |+isin| ——| —
2 4 2

Or 3rx .. (97 3m

Cos| — +— |+isin| — +—
sl )

157 .. (157 1 T . T
cos| — +zs1n(— =—| cos| 4w —— |+isin| 4w ——

4 4 2 4 4 @&

RO CECE

N | —
N

N | =

N | —

2 cos9—7TJrz'sin9—7r
4 4 11 N2 N
= —1i = ———i——. Which is in rectangular form.
S3r), .. (3¢ 22 22 4 4
4| cos| — |+isin| —
2 2 m
Example 2.27
If z=x+iy and arg(z—_ljzz, show that x* +y* =1.
z+1 2
Solution
Now z—1  x+iy—-1 (x-D+iy [(x—l)+iy:| [(x+1)—iy]
T oz+1 x+iy+1l  (x+1D)+iy [(x+1)+iy] [(x+1)—iy]
N z—1 (x> +y" =D +i(2y)
z+1 (x+1)> +y°
. z—1 m 4 2y s
Since, arg| — | = — = tan | ——F—F— | = —
g(z+lj 2 (szryz—lj 2
2y m 2, 2
= S =tan- = x +y —-1=0
x*+y* -1 2 vy
= x’+y° = 1. m
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EXERCISE 2.7

1. Write in polar form of the following complex numbers

() 2+i23  (i)3-iV3 (i) —2-i2 (iv) ﬂ’;l
COS —+isin—
2. Find the rectangular form of the complex numbers 3 3

T o .. 7T
COS— —181In—

(1) cos = +isin 2 || cos 2= +isin = (i1) 6 .
6 6 12 12 ( T nj
2 cos§+zsm§

300F (x, +iy, ) (x, +iv, ) (x; +ivy)-++(x, +iv,) = a+ib, show that

(@) (x12 +y12)(x22 +y22)(x32 +y32)-~-(xn2 +yn2): a’ +b*

(i) Z‘,tan_1 [%j =tan' (Sj +2k7, ke -
r=1

I

4, IfH—Z:c0529+isin29, show that z=itan0 .

-z
5. If cosa +cos B +cosy =sina +sin  +siny =0, show that
(1) cos3a +cos3f +cos3y =3cos(a+[)’+y)and

(1) sin3c +sin3f +sin 3y :3sin(a+[3+y).

z—1

6.If z=x+iyand arg( j=%, show that x* + > +3x-3y+2=0.

zZ+

2.8 de Moivre’s Theorem and its Applications
Abraham de Moivre (1667-1754) was one of the mathematicians to use
complex numbers in trigonometry.

The formula (cos6 +isin@)" =(cosnf +isinnd) known by his name, was

instrumental in bringing trigonometry out of the realm of geometry and into that of

R analysis.
de Moivre

1667-1754
2.8.1 de Moivre's Theorem

de Moivre’s Theorem
Given any complex number cos8 +isin@ and any integer n,
(cosO +isinB)" = cos n +isin no

Corollary

(1) (cosO—isin@)" = cosnb —isin nb (2) (cosO+isinB)™" =cosnb —isinnd

(3) (cos@—isinB)™" =cosnd +isinnd (4) sinO+icosO = i(cos@ —isin@) .

Now let us apply de Moivre’s theorem to simplify complex numbers and to find solution of
equations.

83 Complex Numbers
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Example 2.28

If z=(cosO +isin0), show that z" +Ln:2cosn9 and z” —%:2isinn6.
zZ z

Solution
Let z=(cos6 +isin@).

By de Moivre’s theorem ,

z" = (cosO+isinB)" =cosnb +isinnd

1
— = z " =cosnf —isinnd
z
Therefore, z" +Ln = (cosn9+isin n9)+(cosn9—isin n0)
z
.1
z"+— = 2cosnb.
zZ
Similarly,
z”—in = (cosnf +isinnf)—(cos nf —isinnd )
z
| .
z' —— = 2isinn0 .
z

Example 2.29

18
T T
Simplify| sin—+icos— | .
pit sin 057

Solution - . - .
We have, sin—+icos— = i| cos——isin— |.
6 6 6 6

Raising to the power 18 on both sides gives,

. T . T ' N T .. T '
sin—+icos— | = (i) |cos——isin—
6 6 6 6
( 187 . . 1871)
(1) cos———isin—
6 6

= —(cos3m —isin37)=1+0i.

18
Therefore, (sin%+ icos %J =1.

Example 2.30

. . 1+¢0s20 +isin20 "
Simplify - .
1+ co0s260 —isin 260
Solution
Let z = c0s20+isin20.
As|z|= |z[’=zz =1, we get E=l=00329—isin29.
z
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1+cos20+isin20  1+z (l+z)z

Therefore, - = = =z
I+cos20 —isin20 | 1 z+1
z
. . 30
Therefore, (1 +c0s20 +isin 20 ) = 2" =(c0s20 +isin20 )30
1+ cos260 —isin 260
= ¢0s600 +isin 600 . m
Example 2.31
Simplify (i) (1+4)"® (i) (—/3 +3i)™".
Solution
(i) (1+0)"
Let 1+i = r(cos@ +isin9). Then, we get
r=NP+I =42 a :tan_l(%j:%,

0=0oa= % (.- 141 lies in the first Quadrant)

Therefore 1+i = ﬁ(cos%ﬂ'sin%)

Raising to power 18 on both sides,

18

18
(1+i)* = | V2| cosZ+isinZ || =2 | cosZ+isinZ |
4 4 4 4

By de Moivre’s theorem,

1+ =2° cos£+zsin18—ﬂ
4 4

= 2°| cos| 4m+Z |+isin| 4r+Z | |=2°| cosZE +isinZ
2 2 2 2
(1+0)* = 2°()=512i.

(i) (/3 +3i)"

Let —/3+3i=r(cosO+isin0). Then, we get
ro= ( f) +32 =12=23,

tan™'

IS
Il

=tan"' —,
3

A

0 = n—azﬂ—gz?ﬂ (. —3+3i liesin II Quadrant)

Therefore, —/3 +3i = Zﬁ(cos% +isin %Tj .
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Raising power 31 on both sides,

31
(—\/§+3i)31 = (23 ! cosz?nﬂ'sinz?ﬂj

31
cos (2071 + 2?”} +1isin (2071 + %D

(245)
(245)

- (245 (cos 2 isin 2
(245)

[eoln=3)rion(=5)
cos| m—— |+isin| 7 ——
3 3

= (2\/5)31 —cos%ﬂ‘sin%)=(2\/§)31(—%+i£)

2 [ |
2.8.2 Finding n'" roots of a complex number
de Moivre’s formula can be used to obtain roots of complex numbers. Suppose 7 is a positive
integer and a complex number w is 7 ™ root of z denoted by z'”, then we have
0" =z. (1)

Let o

p(cos¢+ising) and

z = r(cosO+isin@)=r(cos(0 +2km ) +isin(0 +2kx)), keZ

Since wis the n'" root of z , then

n

o =z
r(cos (6 +2kr)+isin (0 +2kn)), keZ

= p"(cos¢+ising)’

By de Moivre’s theorem,
p" (cosnd +isinng) = r(cos(60+2kr)+isin(0 +2kn)), keZ

511551

Comparing the moduli and arguments, we get

p" =rand ng=0+2krn, keZ

p =r"" and ¢:9+2kﬂ,keZ.
Therefore, the values of w are " (cos(9+2kﬂj+isin(9+2kﬂ D, kel.
n n

Although there are infinitely many values of &, the distinct values of w are obtained when
k=0,1,2,3,...,n—1. When k =n,n+1,n+2,... we get the same roots at regular intervals (cyclically).

Therefore the n™ roots of complex number z = r(cos@ +i sinQ) are

Un Un 6+2k7f .. 9+2k7'[
2" =r"| cos +isin L k=0,1,2,3,...,n-1.

n n
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i(0+2kn) Im
If we seto=4/re " the formula for the n™ roots of a A IR
: . . . o™ .,
complex number has a nice geometric interpretation, as shown in o~ J L p
‘ Nt
Figure. Note that because | ® |=4/; the n roots all have the same ! "o
. . . . H — Re
modulus &/ they all lie on a circle of radius &/ with centre at the % e 2 I P
S
o

origin. Furthermore, the n roots are equally spaced along the

q% s\‘ih. —"”/

- -

circle, because successive n roots have arguments that differ by 0~

n" root of a complex number
2w

n Fig. 2.44

Remark

(1) General form of de Moivre's Theorem

If xis rational, then cosx0 +isinx6@ is one of the values of (cos@ +isin6)”.

(2) Polar form of unit circle

Let z = € =cosO +isin@ . Then, we get
= |(:0$9+isin9|2

= |x+iy|2 = cos’O+sin’ 0 =1

= x’+y° =1.

Therefore,

z| =1 represents a unit circle (radius one) centre at the origin.
2.8.3 The n'" roots of unity

The solutions of the equation z” =1, for positive values of integer n, are the n roots of the unity.

In polar form the equation z" =1 can be written as
z" = cos(0+2km)+isin(0+2kn)=e", k=0,1,2,....

Using deMoivre’s theorem, we find the 7 ™ roots of unity from the equation given below:

i2km
zz(cos(zk—n)ﬂ'sin(@)):e " ,k=0,1,2,3,...,n-1. . (1)
n n

Given a positive integern , a complex number z is called an n ™ root of unity if and only if z" =1.

If we denote the complex number by @, then

2mi

= 2wi .. 2mi
w=e" =CoOS——+I1SIn——
n n
E n
= " =|e" | =™ =1
87 Complex Numbers
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Therefore wis an n™ root of unity. From equation (1), the Im

complex numbers 1,0,0°,---, 0" are n™ roots of unity. The

n—1

complex numbers 1,m,>,---,®"" are the points in the complex @ ‘
plane and are the vertices of a regular polygon of n sides inscribed .

in a unit circle as shown in Fig 2.45. Note that because the n®

roots all have the same modulus 1, they will lie on a circle of -

radius 1 with centre at the origin. Furthermore, the nroots are

equally spaced along the circle, because successive 7 ™ roots have ey o

~i

. 2
arguments that differ by =, n™ roots of unity

n
Fig. 2.45
The n™ roots of unity l,m,0°,---,0"" are in geometric
progression with common ratio .
2 i 1-0" : n
Therefore 1+ w+ @’ +---+ 0" = =0 since ®" =1 and @ =1.
-0
The sum of all the n™ roots of unity is
I+ o+0’+ -+ 0" =0.
The product of n, n ™ roots of unit is
(n—1)n

O} lo®? o' = @230 _ 2 [0}

P )("21) _ (eiZn')(nZl) = (e" )"*l _ -1y

The product of all the n™ roots of unity is
low* " =(=1)"".

Since |w|=1, we have w® =|w['=1; hence d=0"' = (@) =0, 0<k<n-1

0" =00t =0 =(@)",0<k<n-1

Therefore, |p"* =@ = (a_))k , 0<k<n-1.

Note

(1) All the n roots of n™ roots unity are in Geometrical Progression
(2) Sum of the n roots of n ™ roots unity is always equal to zero.
(3) Product of the n roots of 7™ roots unity is equal to (=1)"".

(4) All the n roots of n™ roots unity lie on the circumference of a circle whose centre is at the
origin and radius equal to 1 and these roots divide the circle into n equal parts and form a
polygon of n sides.
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Example 2.32

Find the cube roots of unity.

Solution

We have to find lé. Let z= it then z° =1 .

In polar form, the equation z’ =1 can be written as

2° = cos(0+2k7) +isin(0+2km) =™, k=0,1, 2,---.

Therefore, z = cos (?) +isin (%)

Taking k£ =0,1,2, we get,

2km

—e ., k=01,2.

k=0, =z =cos0+isin0=1.

27 .. 27 T . T
k=1 7 = COS—+isSin— =cos| m—— |+isin| T——
’ 3 3 3 3

. 3

= —COS—+isSin—=——+i—

2
k=2, z = cos—+isin—:cos(w+§j+isin(w+zj

= —cos——isinz——l—iﬁ

® 3 2 2

Therefore, the cube roots of unity are

| 1+i3 —1-i3

2 2

2
2
l,w,and ®*, where o =¢ 3 =

Example 2.33
Find the fourth roots of unity.

Solution

We have to find 1°. Let z=1°. Then z*=1.
In polar form, the equation z* =1can be written as

z* = cos(0+2km)+isin(0+2kn) =", k=0,1,2,....

2kr . . (2km
Therefore, z = €08 e +isin 4

Taking k£ =0,1,2,3, we get

2kn
jERT

z=cos0+isin0=1,

) .. (7m) .
z = cos| — |+isin| = |=1.
(2j (2j

89
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Cube roots of unity

Fig. 2.46

—1+i\/§

2

Re

Fourth roots of unity

Fig. 2.47
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k=2, z=cosm+isinmt =—1.
T .. 3w .. T .
k=3, z = €COS—+ISIN— =—COS——ISIN—=—1,
2 2
25
Fourth roots of unity are 1,7, =1, —i = 1, o, ®°, and ’, where o =e * =i. |

Note

(i) In this chapter the letter @ is used for n ™ roots of unity. Therefore the value of w is depending

on n as shown in following table.

value of n 2 3 4 5 k
value of @ i 2 2T 2T 2
e? e’ e e’ ek

(ii) The complex number ze” is a rotation of zby 6 radians in the counter clockwise direction

about the origin.

Example 2.34

Solve the equationz’ +8i =0, wherez e C.
Solution

Let z> +8i=0. Then, we get

22 = -8i

= 8(—i) = 8[005(—%+2kﬂ]+isin(—%+2knD,k el.

Therefore, z = %[cos(@jﬂsin (WD, k=0,1,2.

Taking k£ =0,1,2, we get,

k=0, z =2 cos(—zjﬂ'sin[—zj =2 ﬁ—il =\/§—i
6 6 2 2
k=1, z=2 cos(%jﬂ'sin(%n:2:2(0+i)=O+2i=2i.

k=2, z = 2| cos i +isin i —2| cos| 7+ Z |+isin| 7+ 2%
6 6 6 6

The values of z are \/5—1', 2i, and —\/§—i .
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Example 2.35

Find all cube roots of \/3 +1i.

Solution

We have to find (\/§+i)§.Let Z=(\/§+i)3.Then, z = \/§+i=r(cos9+isin9).

Then, r =+3+1=2, anda:9:%

(-+ /3 +i lies in the first quadrant)

Therefore, z° = /3 +i= 2(cos%+isin%]

18

sin(Mj k=012,
13

Taking £ =0,1,2, we get

k=0, z =23
k=1, z =23
k=2, z =23

Example 2.36

T .. T
coOS—+isimn—/| ;
18 ]

18
137 . . 13«
COS——+isin——|;
18 18
257 .. 25w 1[ T .. Iw
coOS—— +isin——|=23|—cos— —isin—|.
18 18 18 18 u

Suppose z,, z,, and z, are the vertices of an equilateral triangle inscribed in the circle

|z|=2. If z =1+i\/3, then findz, and z,.

Solution

|z| =2 represents the circle with centre (0,0) and radius 2.

Let 4, B, and C be the vertices of the given triangle. Since the vertices z,, z,, and z, form an

equilateral triangle inscribed in the circle|z|=2, the sides of this triangle 4B, BC, and CA

subtendz—7T radians (120 degree) at the origin (circumcenter of the triangle).

(The complex number ze” is a rotation of z by 6 radians in the counter clockwise direction

about the origin.)

. . 2 4 .
Therefore, we can obtain z, and z, by the rotation of z, by ?W and ?ﬂrespectlvely.

Given that 04

OB

‘ ‘ Chapter 2 Complex Numbers.indd 91

Im
= 21:1+l'\/§; AZl:1+i\/§
2 27 /
= ze’ =(1+i\/§)e 3
2 2r 2| Re
= 1+'\/§ CcOS— +isin —
(145) cos 2 isin Z |
23:1—1\/5
C
= (1+iﬁ) —l+i£ =-2; .
2 2 Fig. 2.48
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. pro 2
OC = ze?® =z’ =-2e°
( 2r .. 27rj

= —-2| cos— +isin—

3 3

1B .
= —2(—E+17]:1—1\/§.

Therefore, z, = -2, and z, =1-i3.

EXERCISE 2.8

a+bow+co’
+ —

=-1.

2
1. If @ #1is a cube root of unity, show '[hataijw-i-ca)2
b+co+aw
5 5
2. Show that £+L n ﬁ_i -3,
2 2 2 2
10
T T
1+sin—+icos—
3. Find the value of 10 10
.T. T
I+sin——icos—
10 10

4. If 2cosa =x+l and 2cos 8 =y+l, show that
y

@ X
(i) £+X:2c0s(a—ﬁ)
y X

m n

(i) - = 2isin(ma —np)
y X

5. Solve the equation z* +27=0.

¢+ aw + bw?

(i) xy—ézZisin(a+ﬂ)

(iv) x’”y”+%:200s(ma+nﬂ).
Xy

6. If o #1 is a cube root of unity, show that the roots of the equation (z - 1)3 +8=0are

-1, 1-20,1-20".
8
7. Find the value ofz (cos 2k_7r +isin 21{—”}
P 9 9
8. If @ #1 1is a cube root of unity, show that

() l-o+0’)’ +(1+0-0")° =128.

(i) (1+o)(1+0”)(1+0*) (1+0")-(1+0” ) =1.

9. If z=2-2i,find the rotation of z by 6 radians in the counter clockwise direction about the

origin when

(1)9:% (n)e:z?”
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@ EXERCISE 2.9 |

Choose the correct or the most suitable answer from the given four alternatives :

1.

10.

11.

12.

13
. The value on(i” +i"") is

n+l -n+2 -n+3

AT s

(1) 0 @1 () -1 (4) i

n=l1

(1) 1+i Q) i @)1 4) 0 SHLYU F

. The area of the triangle formed by the complex numbers z,iz, and z+iz in the

Argand’s diagram is

1 2 2 3 2 2
OE @) [z] () 1zl (4) 2]z

. .1 .
. The conjugate of a complex number is ——. Then, the complex number is

1—

1 -1 -1 1
Dz ® 2 ®i D
(\/§+z’)3 (3i+4)
Af z= = , then | z| is equal to
(8+60)
(1o )1 3) 2 (4) 3

.If z is a non zero complex number, such that 2iz* =z then | z| is

1
(1 5 )1 (3)2 43
Af | z—2+i|< 2, then the greatest value of | z | is
(1) 3-2 (2) 3 +2 (3) 5-2 (4) \/5+2
f z—E =2, then the least value of | z| is
z
(H1 (22 33 45
.If | z|=1, then the value of 1+f is
1+z {
(M z 2z 3) 2 41
The solution of the equation |z |—z=1+2i is
(1) E—2i (2) —§+2i (3) 2—21' 4) 2+§z‘
2 2 2 2

If|z,|=1, |z,|=2, |z;| =3 and |9z,z, + 4z,z, + z,z, |=12, then the value of |z, + z, + z, | is
(M1 (2) 2 3)3 (4) 4
If z is a complex number such that ze C\R and z+ ! eR, then | z| is

z

(1o )1 3)2 4) 3
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13. z,,z,, and z, are complex numbers such that z, +z,+2z,=0 and |z |=|z, |=|z,|=1 then
24z 4z is
(13 (22 31 4) 0
14.1f 2l is purely imaginary, then | z| is
z+1
1
) ) 21 (3)2 43
15.1f z=x+iy is a complex number such that |z+2| =|z—2], then the locus of z is
(1) real axis (2) imaginary axis  (3) ellipse (4) circle
16. The principal argument of T is
—1+i
—Sm 27 37 -
1) — 2) — 3) — 4) —
(1 6 2) 3 3) 2 4 >
17. The principal argument of (sin 40°+icos40°)’ is
(1) —110° (2) —70° (3) 70° (4) 110°
18. If (1+4)(1+2i)(1+3i)---(1+ni) = x +iy, then 2-5-10---(1+n7) is
(M1 )i (3) x* +y° 4) 1+n°
19.1f @ #1 is a cubic root of unity and (1+®)’ = A+ Bw , then (4, B) equals
(1) (1,0 (2) (-LD (3) (0,1) 4 (L1
2
(1+143)
20. The principal argument of the complex number ——— = is
4i(1-iv3)
21 s 5w s
1) — 2) — 3) — 4) —
(1 3 2) 6 3) 6 4 >
21.If o and B are the roots of x* +x+1=0, then o’ + B> is
(1 -2 ) -1 31 4) 2
3
T T4,
22. The product of all four values of (cos 3 +isin E) is
(1 -2 ) -1 31 4) 2
1 1 1
23.1f @ #1 is a cubic root of unity and |1 -’ —1 " |=3k, then k is equal to
1 o o
(1)1 @) -1 (3) V3i (4) —3i
10
24. The value of L+3 is
1-3i
2w 41 21 41
1) cis— 2) cis— 3) —cis— 4) —cis —
6] 3 ) 3 3) 3 4) 3
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5 z+1 o ’
25.1f o =cis ?n , then the number of distinct rootsof | @ z+®’ 1 |=0
o’ 1 Z+m
(H1 (2) 2 (3)3 4) 4

SUMMARY

In this chapter we studied
Rectangular form of a complex number is x+iy(or x+ yi), where x and y are real

numbers.

Two complex numbers z, = x, +iy, and z, =x, +iy, are said to be equal if and only if
Re(z,) = Re(z,) and Im(z,) =Im(z,). Thatis x, =x, and y =y,.

The conjugate of the complex number x + iy is defined as the complex number x —iy.

Properties of complex conjugates

(1) Zl+z2:Z_1+Z_2 (6) Im(z):Z Z.Z

) z1 Z, = Z1 Z (7) (z_”) = (E)n , where n1is an integer

(3) zz, =2,2, (8) zis real if and only if z=Z

(4) ( J f—, z, #0 (9) z is purely imaginary if and only if z=-Z
)

(5) Re(z) =22~ (10) F=z

If z = x+iy,then y/x* + y” is called modulus of z. It is denoted by |z| .

Properties of Modulus of a complex number

al- Bl 0

:|Z

(1) |7|=[]

(2) |z1 + zz| < |z1 | + |22| (Triangle inequality)

, where 7 is an integer
3) |zlzz| = |Zl||Z2| (7) Re(z) < |Z|

4) |Z1—ZZ|ZHZI|—|ZZH (8) Im <|Z|

95 Complex Numbers

‘ ‘ Chapter 2 Complex Numbers.indd 95 @ 31-01-2020 17:38:20‘ ‘



Formula for finding square root of a complex number

‘/a+ib+[ M%H% MT_GJ ,where z=a+iband b=0.

Let » and @ be polar coordinates of the point P(x,y)that corresponds to a non-zero

complex number z = x + iy . The polar form or trigonometric form of a complex number P is

z=r(cosO +isin0).
Properties of polar form

Property 1:  Ifz=r(cos@+isin@),then z™ Zl(COSQ—iSiHQ).
r

Property 2:  Ifz, =r(cos6, +isin6,)and z, =r, (cos6, +isin6, ),
then zz, = 17, (cos(6, +6,)+isin(6, +6,)) .
Property3: If z =7 /(cos6, +isin6,)and z, =r,(cos6, +isiné, ),

then =L ::—l[cos(el —0,)+isin(6, —92)] :

Z,

de Moivre’s Theorem
O} (a) Given any complex number cos0 +isin6 and any integer n, [0}

(cosO +isinB)" = cos nO + isin no
(b) Ifxisrational, then cosx0+isinx 6 in one of the values of (cos 6+isin 6)

The n™ roots of complex number z =r(cos6 +isinf) are

V=l (cos(0+2knj+isin(0+2kﬂn, k=0,1,2,3,...,n—1.

n n
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Theory of Equations

“It seems that if one is working from the point of
view of getting beauty in one’s equation,
and if one has really a sound insight, one is on a sure line of progress.”
- Paul Dirac

HEGSTIBE

3.1 Introduction

One of the oldest problems in mathematics is solving algebraic equations, in particular, finding
the roots of polynomial equations. Starting from Sumerian and Babylonians around 2000 BC (BCE),
mathematicians and philosophers of Egypt, Greece, India, Arabia, China, and almost all parts of the
world attempted to solve polynomial equations.

The ancient mathematicians stated the problems and their solutions entirely
in terms of words. They attempted particular problems and there was no generality.
Brahmagupta was the first to solve quadratic equations involving negative numbers.
Euclid, Diophantus, Brahmagupta, Omar Khayyam, Fibonacci, Descartes, and Ruffini
were a few among the mathematicians who worked on polynomial equations. Ruffini
claimed that there was no algebraic formula to find the solutions to fifth degree
equations by giving a lengthy argument which was difficult to follow; finally in 1823, Abel
Norwegian mathematician Abel proved it. (1802-1829)

Suppose that a manufacturing company wants to pack its product into rectangular
boxes. It plans to construct the boxes so that the length of the base is six units more
than the breadth, and the height of the box is to be the average of the length and the
breadth of the base. The company wants to know all possible measurements of the
sides of the box when the volume is fixed.

If we let the breadth of the base as x, then the length is x+ 6 and its height is x+ 3. Hence the
volume of the box is x(x+3)(x+6). Suppose the volume is 2618 cubic units, then we must have
X +9x* +18x =2618 . If we are able to find an x satisfying the above equation, then we can construct
a box of the required dimension.

We know a circle and a straight line cannot intersect at more than two points. But how can we
prove this? Mathematical equations help us to prove such statements. The circle with centre at origin
and radius 7 is represented by the equation x* + y*> = 7, in the xy -plane. We further know that a line,
in the same plane, is given by the equation ax + by +c =0. The points of intersection of the circle and
the straight line are the points which satisfy both equations. In other words, the solutions of the
simultaneous equations

x’+y =r>and ax+by+c=0

give the points of intersection. Solving the above system of equations, we can conclude whether they
touch each other, intersect at two points or do not intersect each other.
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There are some ancient problems on constructing geometrical objects using only a compass and
a ruler (straight edge without units marking). For instance, a regular hexagon and a regular polygon
of 17 sides are constructible whereas a regular heptagon and a regular polygon of 18 sides are not
constructible. Using only a compass and a ruler certain geometrical constructions, particularly the
following three, are not possible to construct:

+ Trisecting an angle (dividing a given angle into three equal angles).

» Squaring a circle (constructing a square with area of a given circle). [Srinivasa Ramanujan

has given an approximate solution in his “Note Book™]
* Doubling a cube (constructing a cube with twice the volume of a given cube).

These ancient problems are settled only after converting these geometrical problems into
problems on polynomials; in fact these constructions are impossible. Mathematics is a very nice

tool to prove impossibilities.

When solving a real life problem, mathematicians convert the problem into a mathematical
problem, solve the mathematical problem using known mathematical techniques, and then convert
the mathematical solution into a solution of the real life problem. Most of the real life problems, when
converting into a mathematical problem, end up with a mathematical equation. While discussing the
problems of deciding the dimension of a box, proving certain geometrical results and proving some

constructions impossible, we end up with polynomial equations.

In this chapter we learn some theory about equations, particularly about polynomial equations,
and their solutions; we study some properties of polynomial equations, formation of polynomial
equations with given roots, the fundamental theorem of algebra, and to know about the number of
positive and negative roots of a polynomial equation. Using these ideas we reach our goal of solving
polynomial equations of certain types. We also learn to solve some non—polynomial equations using
techniques developed for polynomial equations.

@ Learning Objectives

Upon completion of this chapter, the students will be able to

e form polynomial equations satisfying given conditions on roots.

e demonstrate the techniques to solve polynomial equations of higher degree.

e solve equations of higher degree when some roots are known to be complex or surd, irrational,

and rational.
e identify and solve reciprocal equations.

e determine the number of positive and negative roots of a polynomial equation using Descartes
Rule.
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3.2 Basics of Polynomial Equations

3.2.1 Different types of Polynomial Equations

We already know that, for any non—negative integer 7, a polynomial of degree » in one variable
X is an expression given by

P=Px)=ax"+a, x"" +-+ax+a, .. (1)
where a, € C are constants, »=0,1,2,...,n with a, = 0. The variable x is real or complex.
When all the coefficients of a polynomial P are real, we say “P is a polynomial over R ”.

Similarly we use terminologies like “P is a polynomial over C ”, “P is a polynomial over Q ”, and

Pis a polynomial over Z ”.

The function P definedby P(x)=a,x"+a, x"" +--+ax+a, iscalledapolynomial function.

The equation
ax"+a, x""'++ax+a,=0 .. (2)
is called a polynomial equation.

If ac"+a, "' +--+ac+a,=0for some c € C, then c is called a zero of the polynomial (1)
and root or solution of the polynomial equation (2).

If c is a root of an equation in one variable x, we write it as“ x = ¢ is aroot”. The constants a, are
called coefficients. The coefficienta, is called the leading coefficient and the term a,x” is called the
@ leading term. The coefficients may be any number, real or complex. The only restriction we made is &
that the leading coefficient a,is nonzero. A polynomial with the leading coefficient 1 is called a
monic polynomial.
Remark:

We note the following:
» Polynomial functions are defined for all values of x.

» Every nonzero constant is a polynomial of degree 0.

* The constant 0 is also a polynomial called the zero polynomial; its degree is not defined.
* The degree of a polynomial is a nonnegative integer.

* The zero polynomial is the only polynomial with leading coefficient0 .

» Polynomials of degree two are called quadratic polynomials.

» Polynomials of degree three are called cubic polynomials.

* Polynomial of degree four are called quartic polynomials.

It is customary to write polynomials in descending powers of x . That is, we write polynomials
having the term of highest power (leading term) as the first term and the constant term as the last term.

For instance,2x+3y+4z=5 and 6x°+7x°y’+8z=9 are equations in three variables
x,y,z; x’—4x+5=0 is an equation in one variable x. In the earlier classes we have solved
trigonometric equations, system of linear equations, and some polynomial equations.
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We know that 3 is a zero of the polynomial x* —5x+6 and 3 is a root or solution of the equation

x> —5x+6=0. We note that cosx =sinx and cosx+sinx =1 are also equations in one variable x.
However, cosx—sinx and cosx+sinx—1 are not polynomials and hence cosx=sinx and
cos x +sin x =1 are not “polynomial equations”. We are going to consider only “polynomial equations”

and equations which can be solved using polynomial equations in one variable.

We recall that sin” x + cos” x = 1 isanidentity on R , while sin x + cos x =1 and sin’ x +cos’ x =1

are equations.

It is important to note that the coefficients of a polynomial can be real or complex numbers, but
1

the exponents must be nonnegative integers. For instance, the expressions 3x2+1 and 5x2 +1 are
not polynomials. We already learnt about polynomials and polynomial equations, particularly about
quadratic equations. In this section let us quickly recall them and see some more concepts.

3.2.2 Quadratic Equations

For the quadratic equation ax’ +bx +c =0, h> —4qc is called the discriminant and it is usually

—b+~A —b—~A
denoted by A. We know that VA and 3 VA are roots of the ax’ +bx +c =0. The two roots
a a
. ~b+\b* -4 : : .
together are usually written as b ; 9 Ttis unnecessary to emphasize that a = 0, since by
a

saying that ax’ +bx+cisa quadratic polynomial, it is implied that a = 0.
We also learnt that A =0 if, and only if, the roots are equal. When a,b,c are real, we know
* A >0if, and only if, the roots are real and distinct

* A <O0if, and only if, the quadratic equation has no real roots.

3.3 Vieta’s Formulae and Formation of Polynomial Equations

Vieta's formulae relate the coefficients of a polynomial to sums and products of its roots. Vieta

was a French mathematician whose work on polynomials paved the way for modern algebra.

3.3.1 Vieta’s formula for Quadratic Equations

Let a and B be the roots of the quadratic equation ax’ +bx+c =0. Then
ax’+bx+c=a(x—a)(x-p)=ax’—a(a+p)x+a(af)=0.

Equating the coefficients of like powers, we see that

2 Erpl -b c
UAUNSF | a+p - and aﬁ=;-

Soa quadratic equation whose roots are a and fis x° —(a + B)x+of =0 ; that is, a quadratic
equation with given roots is,

x” — (sum of the roots) x+ product of the roots = 0. .. (1)
Note
The indefinite article a is used in the above statement. In fact, if P(x) =0 is a quadratic equation

whose roots are a and S, then ¢P(x) is also a quadratic equation with roots « and B for any
non-zero constant c.
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In earlier classes, using the above relations between roots and coefficients we constructed a
quadratic equation, having o and  as roots. In fact, such an equation is given by (1). For instance, a
quadratic equation whose roots are 3 and 4 is given by x> —7x+12 =0.

Further we construct new polynomial equations whose roots are functions of the roots of a given
polynomial equation; in this process we form a new polynomial equation without finding the roots of
the given polynomial equation. For instance, we construct a polynomial equation by increasing the
roots of a given polynomial equation by two as given below.

Example 3.1
If o and B are the roots of the quadratic equation17x” +43x—73 =0, construct a quadratic
equation whose roots are a +2and f+2.

Solution 73

Since o and B are the roots of 17x” +43x—73=0, we have o + 3 =_1;‘;3 and aff =7.

We wish to construct a quadratic equation with roots a +2 and [ +2 .Thus, to construct such a

quadratic equation, calculate,

thesumoftheroots=a+[3+4:_1;f73+4:f_; and

the product of the roots = aff +2(a + f)+4 = _1—773+2(_1;‘;3J+4 = _1—971

91

. ) . . . 2
Hence a quadratic equation with required roots is x° — ﬁx T =

Multiplying this equation by 17, gives 17x> —=25x-91 = 0
which is also a quadratic equation having roots o +2and S +2. m

Example 3.2
If o and B are the roots of the quadratic equation2x”—7x+13=0, construct a quadratic

equation whose roots are o> and 3°.

Solution . 3
Since a and f are the roots of the quadratic equation, we have a+ f = 5 and aff = PR
Thus, to construct a new quadratic equation,

-3
Sum of the roots = a” + B> = (o + B)* —2af = o
Product of the roots = a’f* =(af8 )2 = %
. . .. 5,3 169 .
Thus a required quadratic equation is x~ + Zx + e =0. From this we see that
4x* +3x+169 = 0
is a quadratic equation with roots oc*and B>. u

Remark
In Examples 3.1 and 3.2, we have computed the sum and the product of the roots using the

known a + f and «ff . In this way we can construct quadratic equation with desired roots, provided
the sum and the product of the roots of a new quadratic equation can be written using the sum and the
product of the roots of the given quadratic equation. We note that we have not solved the given
equation; we do not know the values of o and [ even after completing the task.
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3.3.2 Vieta’s formula for Polynomial Equations

What we have learnt for quadratic polynomial, can be extended to polynomials of higher degree.
In this section we study the relations of the zeros of a polynomial of higher degree with its coefficients.
We also learn how to form polynomials of higher degree when some information about the zeros
are known. In this chapter, we use either zeros of a polynomial of degree n or roots of polynomial
equation of degree n .

3.3.2 (a) The Fundamental Theorem of Algebra

If a is a root of a polynomial equation P(x)=0, then (x—a) is a factor of P(x). So,
deg(P(x))>1.1If aand b are roots of P(x)=0 then (x—a)(x—»b) is a factor of P(x)and hence deg
(P(x)) = 2. Similarly if P(x)=0 has n roots, then its degree must be greater than or equal to . In

other words, a polynomial equation of degree n cannot have more than n roots.

Inearlier classes we have learnt about “multiplicity”. Let us recall what we mean by “multiplicity”.

We know if (x—a)" is a factor of a polynomial equation P(x)=0 and (x—a)""'is not a factor of the

polynomial equation, P(x)=0, then a is called a root of multiplicity & . For instance, 3 is a root of
multiplicity 2 for the equation x* —6x+9 =0and x’ —7x” +159x—9 = 0. Though we are not going to
use complex numbers as coefficients, it is worthwhile to mention that the imaginary number 2+ is
aroot of multiplicity 2 for the polynomials x* — (4 +2i)x +3+4i = 0and x* —8x’ +26x” —40x +25=0.
If a is a root of multiplicity 1 for a polynomial equation, then a is called a simple root of the
polynomial equation.

If P(x)=0 has nroots counted with multiplicity, then also, we see that its degree must be
greater than or equal to 7 . In other words, “a polynomial equation of degree n cannot have more than
n roots, even if the roots are counted with their multiplicities”.

One of the important theorems in the theory of equations is the fundamental theorem of algebra.
As the proof is beyond the scope of the Course, we state it without proof.

theorem 3.1 (The Fundamental Theorem of Algebra) ]
Every polynomial equation of degreen >1 has at least one root in C.

Using this, we can prove that a polynomial equation of degree n has at least n roots in C when the

roots are counted with their multiplicities. This statement together with our discussion above says that

a polynomial equation of degree n has exactly » roots in C

when the roots are counted with their multiplicities.

Some authors state this statement as the fundamental theorem of algebra.

3.3.2(b) Vieta’s Formula
(i) Vieta’s Formula for Polynomial equation of degree 3

Now we obtain these types of relations to higher degree polynomials. Let us consider a general
cubic equation

ax’* +bx* +ex+d = ().
By the fundamental theorem of algebra, it has three roots. Let o , 5, and y be the roots. Thus we
have
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ax’ +bx’ +cx+d = a(x—a)(x—B)(x—y)
Expanding the right hand side,

ax’ —a(o+ B +y)x* +a(of + By +ya)x—a(afy).

Comparing the coefficients of like powers, we obtain

a+pB+y = %b, aﬂ+ﬁy+ya=§ and a[)’y=7.

Since the degree of the polynomial equation is 3, we have a =0 and hence division by ais

meaningful. If a monic cubic polynomial has roots a, f#, and y, then

coefficient of x?

—(a+B+7).,

coefficient of x aff + By +ya , and

constant term —afly .

(ii) Vieta’s Formula for Polynomial equation of degree n >3

The same is true for higher degree monic polynomial equations as well. If a monic polynomial
equation of degree » has roots «,,a,,...,a,, then

coefficient of x"' = Zl = _ZO‘1

® coefficient of x"* =y = Do ®

coefficient of x" =Y, = D,
coefficient of x =2,, = (—1)"712051052...05"_1
coefficient of x° = constantterm = »" = (-1)'a0,..q,

where Zal denotes the sum of all roots, Z oo, denotes the sum of product of all roots taken two at

a time, Zalaz% denotes the sum of product of all roots taken three at a time, and so on. If «, 3,7,
and o are the roots of a quartic equation, then Zal is written as Za , Zalaz is written as Za B
and so on. Thus we have,

Za =a+p+y+0

Zaﬁ =af +oy+ad+ Py + PO +yd

Zaﬁy =afy +aPo +ayd + Pyo

D apys =apys
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When the roots are available in explicit numeric form, then also we use these convenient
notations. We have to be careful when handling roots of higher multiplicity. For instance, if the roots

of a cubic equation are 1, 2, 2, then Za =5 andZaﬁ =(1x2)+(1x2)+(2x2)=8.

From the above discussion, we note that for a monic polynomial equation, the sum of the roots

is the coefficient of x"' multiplied by (—l) and the product of the roots is the constant term multiplied
by (—1)" .

Example 3.3
If a, B, and y are the roots of the equation x’ + px’ +¢gx+r =0, find the value of zﬁi in
/4
terms of the coefficients.
Solution
Since o, B, and y are the roots of the equation x° + px* +gx+r =0, we have
Zl a+p+y =—p and ZB afy =-r.
Now
o, v v axBry p_p
Br By ya aBf  aBy - _

3.3.2 (c) Formation of Polynomial Equations with given Roots

We have constructed quadratic equations when the roots are known. Now we learn how to form
polynomial equations of higher degree when roots are known. How do we find a polynomial equation
of degree n with roots o,,c,, --,a,? One way of writing a polynomial equation is multiplication of

the factors. That is
(x—o)(x—a,)(x—a;)-+(x—0t,)=0

is a polynomial equation with roots «,,a,,-:-,a, . Butitis not the usual way of writing a polynomial

equation. We have to write the polynomial equation in the standard form which involves more
computations. But by using the relations between roots and coefficients, we can write the polynomial
equation directly; moreover, it is possible to write the coefficient of any particular power of x without

finding the entire polynomial equation.

A cubic polynomial equation whose roots are o, 3, and y is

X —(a+B+y)x* +(af+ Py +ya)x—aPfy =0.

A polynomial equation of degree n with roots a,,,,...,a,is given by
x" —(Zal )x"’1 +(Za1a2 )xH —(Za1a2a3 )x"f3 +o4 (1) o, -, =0
where, Zal,Zalaz,Zalaz%,. .. are as defined earlier.

For instance, a polynomial equation with roots 1, =2, and 3 is given by
= (1-2+43)x7 +(1x(=2) +(=2)x3+3x1)x —1x(-2)x3=0
which, on simplification, becomes x* —2x”> —5x+6=0. It is interesting to verify that the expansion
of (x—1)(x+2)(x-3)=0isx’ —2x* =5x+6 =0.
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Example 3.4
Find the sum of the squares of the roots of ax* +bx’ +cx> +dx+e = 0, a#0

Solution
Let o,pB,y, and & be the roots of ax*+bx’ +cx’ +dx+e = 0.

Then, we get b
Y= a+B+y+6 =——,
! c
>, = af+ay+ad+Py+po+ys =—,
a
d
> = afy+aBs+ays + Byd = ——,
a
e
24 = Olﬂj/é = —.
a

We have to find o’ +pB>+y° +68°.
Applying the algebraic identity
(a+b+c+dY =a’ +b*+c” +d* +2(ab+ac+ad +bc+bd +cd) ,

we get 2 2 2 2 2
a +B +y +0 = (a+P+y+90) -2 @B +ay+ad+ Py +Po+yd)
()
a a
b —2ac
Example 3.5

Find the condition that the roots of cubic equation x° + ax” +bx+c =0 are in the ratio p:q:r .

Solution
Since roots are in the ratio p:q:r, we can assume the roots as pA,gA and rA.

Then, we get

2 = pAt+gr+ri=-a, (D)
2o = (pAgA) +(g)(rA) +(rA)(pA) = b, --(2)
2 = (pA)gA)rA) = —c, E)

Now, we get 4
O =4=-— (4

p + q +r

B =4 =-— (5)

pqr

Substituting (4) in (5), we get

3
—Lj =-< = pgra’ =c(p+q+r)’.
prq+r pqr ]

Example 3.6
Form the equation whose roots are the squares of the roots of the cubic equation

X+axt+bx+c = 0.
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Solution
Let o,f,and y be the roots of x’ +ax’ +bx+c = 0.

Then, we get
Xi=a+pf+y=-a, (1)
>, =aB+By+yo =b, ...(2)
25 =afy =—c. ...(3)

We have to form the equation whose roots are o.”, 8, and y”.
Using (1), (2) and (3), we find the following:

Y= a4+ By =(a+B+y) —2af+ Py +ya)=(~a)’ -2(b) =a’ -2b,
X, = a’B By +yial = (af+ By +ya) =2((af)(By)+ (By)(ye) + (ra)(ep))
= (@B + By +ya)’ =20fy(B+y +a) = (b)’ = 2(-c)(~a) =b* ~2ca
L= a’pyt=(afy) =(-o) =c".
Hence, the required equation is
x’ —(az +B° +7/2)x2 +(a2ﬁ2 + By’ +y2a2)x—a2ﬁ2y2 =0.
That is, x’ —(a2 —Zb)x2 4—(b2 —26‘61))6—6’2 =0.

|
Example 3.7
If p is real, discuss the nature of the roots of the equation4x” +4px+ p+2=0, in terms of p.
Solution
® The discriminant A:(4p)2—4(4)(p+2):l6(p2—p—2):16(p+1)(p—2).So,weget ®

A<Oif -1<p<?2
A=01if p=-lor p=2
A>0 if —o<p<—-lor2<p<ow
Thus the given polynomial has
imaginary roots if —1< p<2;
equal real roots if p=—1or p=2;

distinct real roots if —o<p<—-1lor 2<p<ow . m

EXERCISE 3.1

1. If the sides of a cubic box are increased by 1, 2, 3 units respectively to form a cuboid, then
the volume is increased by 52 cubic units. Find the volume of the cuboid.

2. Construct a cubic equation with roots .
(i) 1,2,and 3 (i) 1,1,and =2 (iii) 2, 5 and 1.
3. Ifa, B and y are the roots of the cubic equation x* +2x* +3x +4 = 0, form a cubic equation
whose roots are
() 20,26, 2 (i) ~.~.- (i) o, -B.y
a By
4. Solve the equation 3x° —16x” +23x—6 =0 if the product of two roots is 1.

5. Find the sum of squares of roots of the equation 2x* —8x’ +6x>-3=0.
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6. Solve the equation x’ —9x> +14x+24=0 if it is given that two of its roots are in the
ratio 3:2.

7. If a,B, and y are the roots of the polynomial equation ax’ +bx* +cx+d =0, find the

value of Zﬂi in terms of the coefficients.
14

8. If a,B,y, and & are the roots of the polynomial equation 2x* +5x’ —7x>*+8=0 , find a

quadratic equation with integer coefficients whose roots are a + +y +96 and af3yo .

9. If pand g are the roots of the equation /x> + nx +n =0, show that \/Z + \/g + \/% =0.
q P

10. If the equations x* + px+¢ =0 and x’ + p'x+¢' = 0 have a common root, show that it must

be equal to Pq —p’q or q’—q .
q9-9 p-p
11. A 12 metre tall tree was broken into two parts. It was found that the height of the part which
was left standing was the cube root of the length of the part that was cut away. Formulate this

into a mathematical problem to find the height of the part which was left standing.

3.4 Nature of Roots and Nature of Coefficients of Polynomial Equations
3.4.1 Imaginary Roots

For a quadratic equation with real coefficients, if a +if is a root, then a —if} is also a root. In

this section we shall prove that this is true for higher degree polynomials as well.
We now prove one of the very important theorems in the theory of equations.

Theorem 3.2 (Complex Conjugate Root Theorem)
If a complex number z, is a root of a polynomial equation with real coefficients, then its complex

conjugate z,is also a root.

Proof
Let P(x)=a,x"+a, x"'+---+ax+a,=0 be a polynomial equation with real coefficients.

Let z, be a root of this polynomial equation. So, P(z,) = 0. Now
P(Z_O) = az/+a, z) " +-+az, +a,

_ n
= a,z, ta,,z,

n-1 -
+--t+az,+a,

J— - n _
= a,z, ta,,z,

" 4.vaz,+a, (a =a, as a, isreal forall r)

_ n =1 -
= anZO + an_IZO + + alzo + ao

n n—1 n
= az)/+a, z,)" +---+az,+a, =P(z,)=0=0.

That is P(z,) = 0; this implies that whenever z,is a root (i.e. P( z,)=0), its conjugate z, is also

aroot . "
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If one asks whether 2 is a complex number, many students hesitate to say “yes”. As every integer
is a rational number, we know that every real number is also a complex number. So to clearly specify
a complex number that is not a real number, that is to specify numbers of form a +if8 with S #0,
we use the term “non-real complex number”. Some authors call such a number an imaginary
number.

Remark 1
Letz, =a+if with B #0.Then z, =a —if.If a +if isaroot of a polynomial equation P(x) =0
with real coefficients, then by Complex Conjugate Root Theorem, o —if is also a root of P(x)=0.

Usually the above statement will be stated as complex roots occur in pairs; but actually it means that
non-real complex roots or imaginary roots occur as conjugate pairs, being the coefficients of the
polynomial equation are real.

Remark 2

From this we see that any odd degree polynomial equation with real coefficients has at least one
real root; in fact, the number of real roots of an odd degree polynomial equation with real coefficients
is always an odd number. Similarly the number of real roots of an even degree polynomial equation
with real coefficients is always an even number.

Example 3.8
Find the monic polynomial equation of minimum degree with real coefficients having 2 - J3i

as a root.

Solution
Since 2 —~/3 iis a root of the required polynomial equation with real coefficients, 2 + J3i isalso

a root. Hence the sum of the roots is 4 and the product of the roots is 7. Thus x> —4x+7 =0 is the

required monic polynomial equation. u

3.4.2 Irrational Roots

If we further restrict the coefficients of the quadratic equation ax” + bx + ¢ = 0 to be rational, we get
some interesting results. Let us consider a quadratic equation ax’ +bx+c=0with a, b, and c
rational. As usual let A =5’ —4ac and let 7, and r, be the roots. In this case, when A =0, we have

1, =1, ; this root is not only real, it is in fact a rational number.

When A is positive, then no doubt that /A exists in R and we get two distinct real roots. But

VA will be a rational number for certain values of a,b, and c, and it is an irrational number for
other values of a,b, and c.

If VA is rational, then both 7 and r, are rational.

If VA is irrational, then both 7 and 7, are irrational.

Immediately we have a question. If A>0, when will YA be rational and when will it be
irrational? To answer this question, first we observe that A is rational, as the coefficients are rational

numbers. So A =— for some positive integers m and n with (m,n)=1 where (m,n) denotes the
n
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greatest common divisor of m andn . It is now easy to understand that JA is rational if and only if
both m and n are perfect squares. Also, VA is irrational if and only if at least one of m and n is not
a perfect square.

We are familiar with irrational numbers of the type p + \/E where p and ¢ are rational numbers
and /g is irrational. Such numbers are called surds. As in the case of imaginary roots, we can prove
that if p+ \/5 is a root of a polynomial, then p — \/E is also a root of the same polynomial equation,

when all the coefficients are rational numbers. Though this is true for polynomial equation of any
degree and can be proved using the technique used in the proof of imaginary roots, we state and prove

this only for a quadratic equation in Theorem 3.3.

Before proving the theorem, we recall that if a and b are rational numbers and c is an irrational
number such that a + bc is a rational number, then b must be 0; further if a+bc =0, then a and b
must be 0.

For instance, if a+b\/§e(@, then b must be 0, and if a+byJ2 =0 then a=bh=0. Now we

state and prove a general result as given below.

Theorem 3.3
Let p and ¢ be rational numbers such that \/5 is irrational. If p+ \/5 is a root of a quadratic

equation with rational coefficients, then p— \/5 is also a root of the same equation.

Proof
We prove the theorem by assuming that the quadratic equation is a monic polynomial equation.
The result for non-monic polynomial equation can be proved in a similar way.

Let p and ¢ be rational numbers such that \/5 is irrational. Let p + \/5 be a root of the equation
x* +bx+c=0 where b and care rational numbers.

Let o be the other root. Computing the sum of the roots, we get
o+ p+ \/5 =-b
and hence o ++/g=—b—p Q. Taking -b—p as s, we have oc+\/g:s .

S

Computing the product of the roots, we get
(s=Na)p+iq) = ¢

and hence (sp—q)+ (s — p)\/g =ceQ. Thuss— p=0. This implies that s = pand hence we get

This implies that

a:p—\/g.So,theotherrootis p—\/g. -

Remark
The statement of Theorem 3.3 may seem to be a little bit complicated. We should not be in a
hurry to make the theorem short by writing “for a polynomial equation with rational coefficients,

irrational roots occur in pairs ”. This is not true.
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For instance, the equationx’ —2 =0 has only one irrational root, namely J2.0f course, the
other two roots are imaginary numbers (What are they?).
Example 3.9

Find a polynomial equation of minimum degree with rational coefficients, having 2 — asa

root.

Solution
Since 2—+/3 is a root and the coefficients are rational numbers, 2+ J3 isalsoaroot. A required
polynomial equation is given by
x” — (Sum of the roots) x + Product of the roots = 0

and hence
¥ —4x+1=0
is a required equation. n

Note
We note that the term “rational coefficients” is very important; otherwise, x —(2— \/g) =0will

be a polynomial equation which has 2 —+/3 as a root but not 2+ J3 . We state the following result
without proof.

(Theorem 3.4 )

Let p and ¢ be rational numbers so that \/; and \/5 are irrational numbers; further let one

of \/p and \/5 be not a rational multiple of the other. If \/; + \/E is a root of a polynomial equation

with rational coefficients, then \/; —\/5 ,—\/; +\/5 , and —\/; —\/E are also roots of the same

polynomial equation.
N\ J

Example 3.10
Form a polynomial equation with integer coefficients with % as a root.

Solution

. V2. V2 .
Since ,|—=1s a root, x—,|— 1is a factor. To remove the outermost square root, we take
V3 \ V3
V2

X+, /ﬁ as another factor and find their product

B ER Ry PR )
x\/gx\/g—x\/g.

Still we didn’t achieve our goal. So we include another factor x* + —i and get the product

xz_ﬁ x2+£ —x4—%
J3 )T 3

So, 3x* —2 =0 is a required polynomial equation with the integer coefficients. [ |
Now we identify the nature of roots of the given equation without solving the equation. The idea

comes from the negativity, equal to 0 and positivity of A =5 —4ac.
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3.4.3 Rational Roots

If all the coefficients of a quadratic equation are integers, then A is an integer, and when it is
positive, we have, VA is rational if, and only if, A is a perfect square. In other words, the equation
ax’ +bx + ¢ = 0 with integer coefficients has rational roots, if, and only if, A is a perfect square.

What we discussed so far on polynomial equations of rational coefficients holds for polynomial
equations with integer coefficients as well. In fact, multiplying the polynomial equation with rational
coefficients, by a common multiple of the denominators of the coefficients, we get a polynomial
equation of integer coefficients having the same roots. Of course, we have to handle this situation
carefully. For instance, there is a monic polynomial equation of degree 1 with rational coefficients

having Eas a root, whereas there is no monic polynomial equation of any degree with integer

. .1
coefficients having 5 as a root.

Example 3.11
Show that the equation 2x> —6x+ 7 =0 cannot be satisfied by any real values of x.

Solution
A =b* —4ac =—20< 0. The roots are imaginary numbers.

Example 3.12
Ifx® + 2(k + 2)x+9k =0 has equal roots, find k.

Solution /7GHY3
Here A =b° —4ac = 0 for equal roots. This implies 4(k + 2)2 = 4(9)k . This impliesk=4or 1. g

Example 3.13
Show that, if p,q,r are rational, the roots of the equation x* —2px+ p*> —¢*> +2qr—r> =0 are
rational.

Solution
The roots are rational if A =b* —4ac =(-2p) - 4(p2 —q’ +2qr— r2) .

But this expression reduces to 4<q2 —2qr+r’ ) or 4 (q - r)2 which is a perfect square. Hence the
roots are rational. |
3.5 Applications of Polynomial Equation in Geometry

Certain geometrical properties are proved using polynomial equations. We discuss a few
geometric properties here.

Example 3.14
Prove that a line cannot intersect a circle at more than two points.
Solution
By choosing the coordinate axes suitably, we take the equation of the circle asx* + y* = »* and
the equation of the straight line as y = mx +c. We know that the points of intersections of the circle
and the straight line are the points which satisfy the simultaneous equations
2

X +y = .. (1)
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If we substitute mx+c for y in (1), we get
x>+ (mx+c)Y-r’ =0

which is same as the quadratic equation
(I+m>)x*> +2mex+(c* —=r*) = 0. ..(3)

This equation cannot have more than two solutions, and hence a line and a circle cannot intersect
at more than two points. [ |

It is interesting to note that a substitution makes the problem of solving a system of two equations

in two variables into a problem of solving a quadratic equation.

Further we note that as the coefficients of the reduced quadratic polynomial are real, either both roots
are real or both imaginary. If both roots are imaginary numbers, we conclude that the circle and the straight
line do not intersect. In the case of real roots, either they are distinct or multiple roots of the polynomial. If

they are distinct, substituting in (2), we get two values for y and hence two points of intersection. If we
have equal roots, we say the straight line touches the circle as a tangent. As the polynomial (3) cannot have
only one simple real root, a line cannot cut a circle at only one point.
Note

A technique similar to the one used in example 3.14 may be adopted to prove

* two circles cannot intersect at more than two points.
 acircle and an ellipse cannot intersect at more than four points.

EXERCISE 3.2

1. If k is real, discuss the nature of the roots of the polynomial equation 2x° +kx+k =0, in
terms of k .

2. Find a polynomial equation of minimum degree with rational coefficients, having 2 + J3i as
a root.

3. Find a polynomial equation of minimum degree with rational coefficients, having 2i+3 as a
root.

4. Find a polynomial equation of minimum degree with rational coefficients, having J5-4/3 as

a root.

5. Prove that a straight line and parabola cannot intersect at more than two points.

3.6 Roots of Higher Degree Polynomial Equations

We know that the equation P(x)=0 is called a polynomial equation. The root or zero of a
polynomial equation and the solution of the corresponding polynomial equation are the same. So we
use both the terminologies.

We know that it is easy to verify whether a number is a root of a polynomial equation or not, just
by substitution. But when finding the roots, the problem is simple if the equation is quadratic and it is
in general not so easy for a polynomial equation of higher degree.
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A solution of a polynomial equation written only using its coefficients, the
four basic arithmetic operators (addition, multiplication, subtraction and division),
and rational exponentiation (power to a rational number, such as square, cube,
square roots, cube roots and so on) is called a radical solution. Abel proved that it
is impossible to write a radical solution for general polynomial equation of degree e
five or more. J43CM

We state a few results about polynomial equations that are useful in solving higher degree
polynomial equations.

« Every polynomial in one variable is a continuous function from R to R.

. For a polynomial equation P(x) = 0 of even degree, P(x)—o0 as P(x)—=oo. Thus the graph
of an even degree polynomial start from left top and ends at right top.

« All results discussed on “graphing functions” in Volume I of eleventh standard textbook can
be applied to the graphs of polynomials. For instance, a change in the constant term of a
polynomial moves its graph up or down only.

« Every polynomial is differentiable any number of times.

« The real roots of a polynomial equation P(x) =0 are the points on the x -axis where the
graph of P(x)=0cuts the x -axis.

« If a and b are two real numbers such that P(a) and P(b) are of opposite signs, then
- there is a point ¢ on the real line for which P(c)=0.
- that is, there is a root between a and b .

® - itis not necessary that there is only one root between such points; there may be 3,5,7,... ®
roots; that is the number of real roots between a and b is odd and not even.

However, if some information about the roots are known, then we can try to find the other roots.
For instance, if it is known that two of the roots of a polynomial equation of degree 6 with rational
coefficients are 2+ 3; and 4—+/5, then we can immediately conclude that 2—3i and 4++/5 are
also roots of the polynomial equation. So dividing by the corresponding factors, we can reduce the
problems into a problem of solving a second degree equation. In this section we learn some ways of
finding roots of higher degree polynomials when we have some information.

3.7 Polynomials with Additional Information

Now we discuss a few additional information with which we can solve higher degree polynomials.
Sometimes the additional information will directly be given, like, one root is 2+ 3i. Sometimes the
additional information like, sum of the coefficients is zero, have to be found by observation of the
polynomial.

3.7.1 Imaginary or Surds Roots

If a +ip is an imaginary root of a quartic polynomial with real coefficients, then o —ip is also
a root; thus (x—(a +if)) and(x—(a —ip))are factors of the polynomial; hence their product is a
factor; in other words, x* —2ax+a’ + ”is a factor; we can divide the polynomial with this factor
and get the second degree quotient which can be solved by known techniques; using this we can find

all the roots of the polynomial.
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If 2++/3 is aroot of a quadric polynomial equation with rational coefficients, then 2 —3 is
also a root; thus their product (x—(2+ V3 N(x—(2- V3 ) is a factor; that is x> —4x+1 is a factor; we

can divide the polynomial with this factor and get the quotient as a second degree factor which can be
solved by known techniques. Using this, we can find all the roots of the quadric equation. This

technique is applicable for all surds taken in place of 2 + J3.

If an imaginary root and a surd root of a sixth degree polynomial with rational coefficient are
known, then step by step we may reduce the problem of solving the sixth degree polynomial equation
into a problem of solving a quadratic equation.

Example 3.15
If 2+i and 3—+/2 are roots of the equation

x°—13x" +62x* —126x° +65x> +127x-140=0,
find all roots.

Solution
Since the coefficient of the equations are all rational numbers, and 2 +iand3— J2 are roots, we

get 2—i and 3+ J2 are also roots of the given equation. Thus (x — (2 +1)), (x—(2-1)),(x—(3— 2 )
and (x—(3+ 2 )) are factors. Thus their product
(x= Q2+ (r=2-))(x-B-V2) (x~(B++2))
is a factor of the given polynomial equation. That is,
(x> —4x+5)(x* —6x+7)

is a factor. Dividing the given polynomial equation by this factor, we get the other factoras (x” —3x —4)
which implies that 4 and —1 are the other two roots. Thus

2+i,2-i,3++2,3-2,-1, and 4

are the roots of the given polynomial equation. u

3.7.2 Polynomial equations with Even Powers Only

If P(x) is a polynomial equation of degree 2n, having only even powers of x, (that is,
coefficients of odd powers are 0) then by replacing x> by y, we get a polynomial equation with
degree n in y; let y,,y,,---y, be the roots of this polynomial equation. Then considering the n
equations x* =y, we can find two values for x for each ¥, ; these 2n numbers are the roots of the
given polynomial equation in x.
Example 3.16

Solve the equation x* —9x” +20=0.

Solution
The given equation is
x*=9x*+20=0.

This is a fourth degree equation. If we replace x°by y, then we get the quadratic equation

¥ =9y+20=0.
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It is easy to see that 4 and 5 as solutions for y* —9y+20=0. Now taking x* =4and x° =5,
we get 2, —2,/5,—/5 as solutions of the given equation. u

We note that the technique adopted above can be applied to polynomial equations like
xX=17x*+30=0, ax* +bx"*+¢c=0 and in general polynomial equations of the form
ax" +a,_x"""V+...+ax"+a, =0 where k is any positive integer.

3.7.3 Zero Sum of all Coefficients

Let P(x) = 0be a polynomial equation such that the sum of the coefficients is zero. What actually
the sum of coefficients is? The sum of coefficients is nothing but P(1). The sum of all coefficients is
zero means that P(I) =0 which says that 1 is a root of P(x). The rest of the problem of solving the

equation is easy.
Example 3.17
Solve the equation x* —3x* —33x+35=0.

Solution
The sum of the coefficients of the polynomial is 0. Hence 1 is a root of the polynomial. To find

other roots, we divide x’ —3x”> —33x+35 by x—1 and get x* —2x—35 as the quotient. Solving this

we get 7 and —5 as roots. Thus 1,7,—5 form the solution set of the given equation. [ |

3.7.4 Equal Sums of Coefficients of Odd and Even Powers

Let P(x)=0be a polynomial equation such that the sum of the coefficients of the odd powers
and that of the even powers are equal. What does actually this mean? If a is the coefficient of an odd
degree in P(x) =0, then the coefficient of the same odd degree in P(—x) =0 is —a . The coefficients
of even degree terms of both P(x) =0 and P(—x) =0 are same. Thus the given condition implies that
the sum of all coefficients of P(—x)=0 is zero and hence 1 is a root of P(—x)=0 which says that

—1 is aroot of P(x)=0. The rest of the problem of solving the equation is easy.

Example 3.18
Solve the equation2x’ +11x> —9x—18=0.

Solution
We observe that the sum of the coefficients of the odd powers and that of the even powers are

equal. Hence —1 is a root of the equation. To find other roots, we divide 2x’ +11x* —=9x—18 by x+1
. . : 3 3

and get 2x° +9x—18 as the quotient. Solving this we get 5 and —6 as roots. Thus —6,—1,5 are the

roots or solutions of the given equation. u

3.7.5 Roots in Progressions

As already noted to solve higher degree polynomial equations, we need some information about
the solutions of the equation or about the polynomial. “The roots are in arithmetic progression” and
“the roots are in geometric progression” are some of such information. Let us discuss an equation of
this type.
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Example 3.19
Obtain the condition that the roots of x° + px* +gx+r =0 are in A.P.

Solution
Let the roots be in A.P. Then, we can assume them in the form a —d,o, o +d .

Applying the Vieta’s formula (o —-d)+a+(a+d) = —% =p=>3a=-p=>a =—§.

But, we note that « is a root of the given equation. Therefore, we get

3 2
(_Ej +p(_£j +q(_§)+r:():>9pq=2p3+27r.

3 3 n

Example 3.20
Find the condition that the roots of ax’ +bx” +cx+d =0 are in geometric progression. Assume
a,b,c,d =0

Solution
Let the roots be in G.P.

) a
Then, we can assume them in the form I,a,al .

Applying the Vieta’s formula, we get

1
= o —+1+A|=— (1
2 ( ) J ; ey
5 =a2[l+1+xj =L ©)
) /1 »
23 = O£3=—£. ...(3)
a
Dividing (2) by (1), we get
c
o =—— ... (4
5 4
cY d
Substituting (4) in (3), we get (—Ej =——=ac’=db’.
a
Example 3.21 u
If the roots of x° + px* +¢gx+r =0 are in H.P., prove that 9pgr=27r>+2q" .
Assume p,q,r#0
Solution
Let the roots be in H.P. Then, their reciprocals are in A.P. and roots of the equation
IRy 1Y (1 .
—|+p|l—| +q| —|+r=0 < X" +gx "+ px+1=0. .. (D)
X X X

Since the roots of (1) are in A.P., we can assume them as o —d,a,a+d .

Applying the Vieta’s formula, we get

Yo=@-d)+a+(@+d)=-L=3a=-L=o=-2
r r 3r
XII - Mathematics 116

‘ ‘ Chapter 3 Theory of Equation.indd 116 @ 31-01-2020 17:32:37 ‘ ‘



| YT T ] ® (. T

But, we note that « is a root of (1). Therefore, we get

3 2
rl L +q 4 +p 4 +1=0=-¢+3¢ —9pqr+27r* =0=9pqr=2¢" +27r* . B
3r 3r 3r

Example 3.22
It is known that the roots of the equation x’ —6x° —4x+24 =0 are in arithmetic progression.

Find its roots.
Solution

Let the roots bea—d,a,a+d . Then the sum of the roots is 3a¢ which is equal to 6 from the
given equation. Thus 3a =6 and hencea = 2. The product of the roots is @’ —ad”> which is equal to
—24 from the given equation. Substituting the value of a, we get 8—2d* =24 and hence d =+4.

If we take d =4 we get —2,2,6as roots and if we take d =—4, we get 6,2,—2 as roots (same roots
given in reverse order) of the equation. u

EXERCISE 3.3

1. Solve the cubic equation : 2x° —x* —18x+9 =01 if sum of two of its roots vanishes.
Solve the equation 9x° —36x” +44x—16 =0 if the roots form an arithmetic progression.

Solve the equation 3x’ —26x” +52x —24 =0 if its roots form a geometric progression.

Eall

Determine & and solve the equation 2x’ —6x” +3x+k =0 if one of its roots is twice the sum
of the other two roots.

5. Find all zeros of the polynomial x®—3x* —5x* +22x” —39x” —39x+135, if it is known that
1+2i and /3 are two of its zeros.

6. Solve the cubic equations : (i) 2x° —9x” +10x =3, (ii) 8x’ —2x* = 7x+3=0.

7. Solve the equation : x* —14x* +45=0.

3.7.6 Partly Factored Polynomials

Quartic polynomial equations of the form (ax+b)(cx+d)(px+q)(rx+s)+k=0, k=0
which can be rewritten in the form (ax2 + Bx + /\> (ax2 + Bx+ ,u) +k=0
We illustrate the method of solving this situation in the next two examples.
Example 3.23
Solve the equation
x=-2)(x=-7)(x=3)(x+2)+19 =0.
Solution

We can solve this fourth degree equation by rewriting it suitably and adopting a technique of
substitution. Rewriting the equation as

x-2)(x=-3)(x-7)(x+2)+19 =0.
the given equation becomes
(x> =5x+6)(x* =5x—14)+19 = 0.

If we take x* —5x as y, then the equation becomes (v +6)(y —14)+19 = 0;
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that is,
¥ —8y—-65 = 0.

Solving this we get solutions y =13 and y = -5 . Substituting this we get two quadratic equations

x> =5x—-13 =0 and x> —5x+5=0
which can be solved by usual techniques. The solutions obtained for these two equations together

5477 5445
2 7 '

2 |

give solutions as

Example 3.24
Solve the equation  (2x—3)(6x—1)(3x—2)(x—2)—5= 0.
Solution

The given equation is same as

2x—=3)3x—-2)(6x—1)(x—2)—5 = 0.
After a computation, the above equation becomes
(6x” —13x+6)(6x" —13x+2)—5 = 0.
By taking y = 6x° —13x, the above equation becomes,
y+6)(y+2)—-5=0
which is same as
P +8y+7=0.

Solving this equation, we get y=—1land y=—7.
Substituting the values of y in y=6x" —13x, we get
6x" —13x+1 = 0

6x* —13x+7 = 0
Solving these two equations, we get

13++/145
= T and x

13—4/145
12

x:l,x:z,x
6

as the roots of the given equation. -
EXERCISE 3.4
1. Solve : (i) (x=5)(x=7)(x+6)(x+4)=504 (i) (x=H)(x-7)(x-2)(x+1)=16
2. Solve : 2x—1)(x+3)(x—2)(2x+3)+20=0

3.8 Polynomial Equations with no Additional Information
3.8.1 Rational Root Theorem

We can find a few roots of some polynomial equations by trial and error method. For instance,

we consider the equation
45 —8x* —x+2 =0 .. (D)
This is a third degree equation which cannot be solved by any method so far we discussed in this
chapter. If we denote the polynomial in (1) as P(x), then we see that P(2) =0 which says that x—2

is a factor. As the rest of the problem of solving the equation is easy, we leave it as an exercise.
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Example 3.25
Solve the equation x® —5x”> —4x+20=0.

Solution

If P(x) denotes the polynomial in the equation, then P(2)=0. Hence 2 is a root of the
polynomial equations. To find other roots, we divide the given polynomial x’ —5x>—4x+20 by
x—2 and get O(x)= x”* —3x—10 as the quotient. Solving Q(x)=0 we get —2 and 5 as roots. Thus

2,-2,5are the solutions of the given equation.

Guessing a number as a root by trial and error method is not an easy task.
But when the coefficients are integers, using its leading coefficient and the
constant term, we can list certain rational numbers as possible roots. Rational Root
Theorem helps us to create such a list of possible rational roots. We recall that if
a polynomial has rational coefficients, then by multiplying by suitable numbers

we can obtain a polynomial with integer coefficients having the same roots. So
we can use Rational Root Theorem, given below, to guess a few roots of polynomial with rational
coefficient. We state the theorem without proof.

Theorem 3.5 (Rational Root Theorem)
P
Let a x"+---+ax+a,with a, = 0and a, = 0, be a polynomial with integer coefficients. If °

with (p,q) =1, is aroot of the polynomial, then p is a factor of a, and qis a factor of a, .

When a, =1, if there is a rational root P , then as per theorem 3.5 ¢ is a factor of a,, then we

must have ¢ =%1.Thus p must be an integer. So a monic polynomial with integer coefficient cannot
have non-integral rational roots. So whena, =1, if at all there is a rational root, it must be an integer
and the integer should divide q,. (We say an integer a divides an integer b, ifb=ad for some

integer d .)
As an example let us consider the equation x* —5x—6=0. The divisors of 6 are £1, +2, £3, +6.

From Rational Root Theorem, we can conclude that +1, +2, 3, + 6 are the only possible solutions
of the equation. It does not mean that all of them are solutions. The two values —1 and 6 satisfy the
equation and other values do not satisfy the equation.

Moreover, if we consider the equation x* +4 =0, according to the Rational Root theorem, the
possible solutions are =1, +2, +£4; but none of them is a solution. The Rational Root Theorem helps
us only to guess a solution and it does not give a solution.

Example 3.26
Find the roots of 2x” +3x* +2x+3=0.
Solution

According to our notations, a, =2and q,=3. If P s a zero of the polynomial, then as
q
(p,q)=1, p must divide 3 and ¢ must divide 2. Clearly, the possible values of p are 1,-1,3,-3

and the possible values of gare 1,-1,2,-2. Using these p and ¢ we can form only the fractions
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3

. o o o -3 .
+ AT Among these eight possibilities, after verifying by substitution, we get > is the

—_ | —

oyt %

o | —
N | W

only rational zero. To find other zeros, we divide the given polynomial 2x’ +3x” +2x+3 by 2x+3

and get x” +1 as the quotient with zero remainder. Solving x* +1=0,we get i and —i as roots. Thus

=3 ,—1, i are the roots of the given polynomial equation. -
3.8.2 Reciprocal Equations
Let a be a solution of the equation.
2x° =3x° +2x + 7 #4237 =3x+2 = 0. (1)
Then a = 0 (why?) and
20° =3a’ +\2a* +7a° +2a* =3a+2 = 0.

Substitutingl for x in the left side of (1), we get

A AT A

2 3a+20% +7a° +20* —3a° +20° 0
= aﬁ :;:O_

Thus — 1is also a solution of (1). Similarly we can see that if o is a solution of the equation
a

2x° +3x" —4x’ +4x* -3x-2 =0 ..(2)

thenl is also a solution of (2).
o

. . 1. .
Equations (1) and (2) have a common property that, if we replace x by — in the equation and
X
write it as a polynomial equation, then we get back the same equation. The immediate question that
flares up in our mind is “Can we identify whether a given equation has this property or not just by

seeing it?” Theorem 3.6 below answers this question.

Definition 3.1

A polynomial P(x) of degree n is said to be a reciprocal polynomial if one of the following

conditions is true:

(i) P(x) = x"P(lj (i) P(x)=—x"P (lj .
X X

Apolynomial P(x) ofdegree n is said to be a reciprocal polynomial of Typelif P(x)=x"P [—j . 1s
X

called a reciprocal equation of Type I.

. . . : 1) .
A polynomial P(x) of degree n is said to be a reciprocal polynomial of Type Il P(x) = —x"P(—j T
X

called a reciprocal equation of Type II.
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(Theorem 3.6 )
A polynomial equation  ax"+a, x"'+a, , X"+ +ax’+ax+a,=0, (a,=0) is a
reciprocal equation if, and only if, one of the following two statements is true:
W a,=ay,, a,,=a, a,,=a,

\=ay, A, 5 =0y, -

(i) a =—a,» a

" J
Proof
Consider the polynomial equation
P(x) = ax"+a, x"" +a, x""++ax’+ax+a,=0. .. (1)
: 1.
Replacing x by — in (1), we get
x
P(lj = a—z+%+%+---+a—§+ﬂ+%:0. .. (2)
X X" x X X x
Multiplying both sides of (2) by x", we get
1
x"P(;j = ax"+ax"" +a,x"++a _,x +a,_x+a,=0. .. (3)

Now, (1) is a reciprocal equation < P(x)= =+ x”P(lj <> (1) and (3) are same .
X

. . a, a_, a_ a a a
This is possible < 2 =—l="r2—...= 2 =1 -0
a, 4 a, a,, 4

Let the proportion be equal to A. Then, we get D _ 2 and Y=, Multiplying these
a, a

n

equations, we get 1> =1. So, we get two cases A =land A=-1.

Case (i) :

A =1 In this case, we have a,=a,, a, ,=a,, a, ,=a,, -

That is, the coefficients of (1) from the beginning are equal to the coefficients from the end.
Case (ii) :

A =-1 In this case, we have a, =-a,, a,, =—a,, a, , =—a,, .

That is, the coefficients of (1) from the beginning are equal in magnitude to the coefficients from
the end, but opposite in sign. m
Note

Reciprocal equations of Type I correspond to those in which the coefficients from the beginning
are equal to the coefficients from the end.

For instance, the equation 6x° +x* —43x> —43x” +x+6 =0 is of type 1.

Reciprocal equations of Type II correspond to those in which the coefficients from the beginning
are equal in magnitude to the coefficients from the end, but opposite in sign.

For instance, the equation 6x° —41x* +97x> —97x*> +41x—6=0 is of Type II.
Remark

(i) A reciprocal equation cannot have 0 as a solution.

(i1) The coefficients and the solutions are not restricted to be real.

121 Theory of Equations

‘ ‘ Chapter 3 Theory of Equation.indd 121 @ 31-01-2020 17:34:08‘ ‘



(i11) The statement “If P(x) =0 is a polynomial equation such that whenever « is a root, —
a

is also a root, then the polynomial equation P(x) =0 must be a reciprocal equation” is

. . . . 1
not true. For instance 2x° —9x* +12x—4 =0 is a polynomial equation whose roots are 2, 2,5.

Note that x*P !

=+ P(x) and hence it is not a reciprocal equation. Reciprocal equations are

classified as Type I and Type II according to a, ., =a, ora, ., =—a. ,r=0, 1, 2,..n. We state
some results without proof :

* For an odd degree reciprocal equation of Type I, x =—1 must be a solution.

» For an odd degree reciprocal equation of Type II, x =1 must be a solution.

* For an even degree reciprocal equation of Type II, the middle term must be 0. Further

x=1and x =-1 are solutions.

. . . 1 1 .
* For an even degree reciprocal equation, by taking x+— or x——as y, we can obtain a
X X

polynomial equation of degree one half of the degree of the given equation ; solving this
polynomial equation, we can get the roots of the given polynomial equation.
As an illustration, let us consider the polynomial equation
6x° —35x° +56x* —56x% +35x-6=0
which is an even degree reciprocal equation of Type II. So 1 and —1 are two solutions of the equation

and hence x” —1 is a factor of the polynomial. Dividing the polynomial by the factor x* —1, we get

6x* —35x° +62x° —35x+6 as a factor. Dividing this factor by x°and rearranging the terms we get

6(x2 + izj -35 (x + lj +62. Setting u= (x + l) it becomes a quadratic polynomial as
X X X

2 . 2 . . 10 5 . 10
6(u* —2)—35u + 62 which reduces to 6u> —35u+50. Solving we obtain u = 35 Taking u = 3

gives x= 3,% and taking u = % gives x = 2,% . So the required solutions are +1,—1, 2,%,3,l

Example 3.27
Solve the equation 7x° —43x?> =43x—7 .

Solution
The given equation can be written as 7x° —43x* —43x+7=0.

This is an odd degree reciprocal equation of Type I. Thus —1 is a solution and hence x +1 is a factor.
Dividing the polynomial 7x’ —43x” —43x+7 by the factor x+1,we get 7x° —50x+7 as a quotient.
Solving this we get 7 and % as roots. Thus —1, % , 7 are the solutions of the given equation. [ |

Example 3.28
Solve the following equation: x* —10x’ +26x* —10x+1=0.
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Solution

This equation is Type I even degree reciprocal equation. Hence it can be rewritten as

1 1
x’ |:(x2+—2)—10(x+—)+26:|=0 Since x # 0, we get (x2 +L2)—10(x+l)+26=0
X X X x

1
Let y = x+—.Then, we get
X

(y2—2)—10y+26 =0 = »'=10y+24 =0 = (y—6)(y—4) =0= y=6or y=4

Case (i)
y=6 = x+l=6 = x:3+2\/§,X=3—2\/§.
X
Case (i) [ |

y=4 = x+l=4 = x=2+3,x=2-3
X

Hence, the roots are 3+22 , 2% 3
3.8.3 Non-polynomial Equations

Some non-polynomial equations can be solved using polynomial equations. As an example let

us consider the equation+/15—2x = x. First we note that this is not a polynomial equation. Squaring
both sides, we get x*+2x—15=0. We know how to solve this polynomial equation. From the

solutions of the polynomial equation, we can analyse the given equation. Clearly 3 and —5 are
solutions of x° +2x—15=0. If we adopt the notion of assigning only nonnegative values for g

then x =3 is the only solution; if we do not adopt the notion, then we get x =—5 is also a solution.

Example 3.29: Find solution, if any, of the equation
2cos’x—9cosx+4 = 0. .. (1)
Solution
The left hand side of this equation is not a polynomial in x. But it looks like a polynomial. In
fact, we can say that this is a polynomial in cosx. However, we can solve equation (1) by using our

knowledge on polynomial equations. If we replace cos x by y, then we get the polynomial equation

: 1 .
2y* ~9y+4=0 for which 4 and S are solutions.
: : 1 : .
From this we conclude that x must satisfy cosx =4orcosx = 5 But cos x =4 is never possible,

: 1 o o 1 .
if we take cosx = 5 then we get infinitely many real numbers x satisfying cosx = 5 ; in fact, for all

neZ, x=2nrt 3 are solutions for the given equation (1). -

If we repeat the steps by taking the equation cos’x—9cosx+20=0, we observe that this

equation has no solution.
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Remarks
We note that

L]

not all solutions of the derived polynomial equation give a solution for the given equation;

there may be infinitely many solutions for non-polynomial equations though they look like
polynomial equations;
there may be no solution for such equations.

the Fundamental Theorem of Algebra is proved only for polynomials; for non-polynomial
expressions, we cannot talk about degree and hence we should not have any confusion on the
Fundamental Theorem of Algebra having non-polynomial equations in mind.

EXERCISE 3.5

. Solve the following equations

(i) sin’x—5sinx+4=0 (i) 12x° +8x=29x" —4

. Examine for the rational roots of

(1) 2x*=x*=1=0 (ii) x* =3x+1=0.

3 -3

Solve : 8x2" —8x2" = 63

. Solve : 2\/g+3\/§=é+6—a.
a x a b

. Solve the equations

(i) 6x*—35x° +62x° =35x+6=0 (i) x* +3x —~3x-1=0

. Find all real numbers satisfying 4* —3(2"2)+2° =0.

. Solve the equation 6x* —5x" —38x* —5x+6 =0 if it is known that % is a solution.

3.9 Descartes Rule

In this section we discuss some bounds for the number of positive roots, number of negative

roots and number of nonreal complex roots for a polynomial over R . These bounds can be computed

using a powerful tool called “Descartes Rule”.

3.9.1 Statement of Descartes Rule

To discuss the rule we first introduce the concept of change of sign in the coefficients of a
polynomial.

Consider the polynomial.

2x" =3x° —4x° +5x  +6x° —Tx+8

For this polynomial, let us denote the sign of the coefficients using the symbols “+’and ‘—’as

+,— -ttt
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Note that we have not put any symbol corresponding to x°. We further note that 4 changes of

. 4 1
sign occurred (at x°,x*, x'and x°).

Definition 3.2
A change of sign in the coefficients is said to occur at the ;™ power of x in a polynomial
P(x), if the coefficient of x’*' and the coefficient of x’ (or) also coefficient of x’~ coefficient of

x’ are of different signs. (For zero coefficient we take the sign of the immediately preceding
nonzero coefficient.)

From the number of sign changes, we get some information about the roots of the polynomial using
Descartes Rule. As the proof'is beyond the scope of the book, we state the theorem without proof.

Theorem 3.7 (Descartes Rule)

If p is the number of positive zeros of a polynomial P(x)with real coefficients and s is the

number of sign changes in coefficients of P(x), then s— p is a nonnegative even integer.

The theorem states that the number of positive roots of a polynomial P(x) cannot be more than
the number of sign changes in coefficients of P(x). Further it says that the difference between the
number of sign changes in coefficients of P(x) and the number of positive roots of the polynomial
P(x) is even.

As a negative zero of P(x) is a positive zero of P(—x) we may use the theorem and conclude

that the number of negative zeros of the polynomial P(x) cannot be more than the number of

sign changes in coefficients of P(-x) and the difference between the number of sign changes in

coefficients of P(—x)and the number of negative zeros of the polynomial P(x) is even.

As the multiplication of a polynomial by x*, for some positive integer k , neither changes the

number of positive zeros of the polynomial nor the number of sign changes in coefficients, we need
not worry about the constant term of the polynomial. Some authors assume further that the constant
term of the polynomial must be non zero.

We note that nothing is stated about ( as a root, in Descartes rule. But from the very sight of the
polynomial written in the customary form, one can say whether 0 is a root of the polynomial or not.

Now let us verify Descartes rule by means of certain polynomials.

3.9.2 Attainment of bounds
3.9.2 (a) Bounds for the number of real roots

The polynomial P(x) = (x+1)(x—1)(x—2)(x+i)(x—i)has the zeros -1,1,2,—i,i. The
polynomial, in the customary form is x° —2x* —x+2.This polynomial P(x) has 2 sign changes,

namely at fourth and zeroth powers. Moreover,

P(—x)=—x" -2x"+x+2
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has one sign change. By our Descartes rule, the number of positive zeros of the polynomial P(x)
cannot be more than 2; the number of negative zeros of the polynomial P(x) cannot be more than 1.
Clearly 1 and 2 are positive zeros, and —1 is the negative zero for the polynomial, x* —2x* —x+2,
and hence the bounds 2 for positive zeros and the bound 1 for negative zeros are attained. We note
that i and —i are neither positive nor negative.

We know (x+2)(x+3)(x+i)(x—1i)is apolynomial with roots —2,—3,—i, i. The polynomial, say
P(x), in the customary form is x* +5x° + 7x> +5x +6.

This polynomial P(x) has no sign change and P(—x)=x"—5x"+7x>~5x+6 has 4 sign
changes. By Descartes rule, the polynomial P(x)cannot have more than 0 positive zeros and the
number of negative zeros of the polynomial P(x) cannot be more than 4.

As another example, we consider the polynomial.

n o n n-1  n n-2 n n-3 n—ln
x'=TOXT A CXTT " CXT e+ (-1D)TC,

x+(=1)".
This is the expansion of (x—1)". This polynomial has »n changes in coefficients and P(—x) has no

change of sign in coefficients. This shows that the number of positive zeros of the polynomial cannot be
more than »n and the number of negative zeros of the polynomial cannot be more than 0. The statement on
negative zeros gives a very useful information that the polynomial has no negative zeros. But the statement
on positive zeros gives no good information about the positive zeros, though there are exactlyn positive
zeros; in fact, it is well-known that for a polynomial of degree # , the number of zeros cannot be more than

n and hence the number of positive zeros cannot be more than » .

3.9.2 (b) Bounds for the number of Imaginary (Nonreal Complex)roots

Using the Descartes rule, we can compute a lower bound for the number of imaginary roots. Let
m denote the number of sign changes in coefficients of P(x)of degree n; let £ denote the number
of sign changes in coefficients of P(—x). Then there are at least n—(m+ k) imaginary roots for the
polynomial P(x). Using the other conclusion of the rule, namely, the difference between the number
of roots and the corresponding sign changes is even, we can sharpen the bounds in particular cases.
Example 3.30

Show that the polynomial 9x° +2x” —x* —7x” +2 has at least six imaginary roots.

Solution
Clearly there are 2 sign changes for the given polynomial P(x) and hence number of positive

roots of P(x) cannot be more than two. Further, as P(—x) = —9x” —2x” —x* —7x* + 2, there is one
sign change for P(—x) and hence the number of negative roots cannot be more than one. Clearly 0

is not a root. So maximum number of real roots is 3 and hence there are atleast six imaginary roots. ~ ®

Remark From the above discussion we note that the Descartes rule gives only upper bounds for
the number of positive roots and number of negative roots; the Descartes rule neither gives the exact
number of positive roots nor the exact number of negative roots. But we can find the exact number
of positive, negative and nonreal roots in certain cases. Also, it does not give any method to find the
roots.
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Example 3.31
Discuss the nature of the roots of the following polynomials:

(i) X" +1947x"° +15x* +26x° +2019 (i) x° —19x* +2x° +5x° +11

Solution

Let P(x) be the polynomial under consideration.

(1) The number of sign changes for P(x) and P(—x) are zero and hence it has no positive roots

and no negative roots. Clearly zero is not a root. Thus the polynomial has no real roots and
hence all roots of the polynomial are imaginary roots.

(i1) The number of sign changes for P(x) and P(—x) are 2 and 1 respectively. Hence it has at

most two positive roots and at most one negative root.Since the difference between number
of sign changes in coefficients of P(—x) and the number of negative roots is even, we
cannot have zero negative roots. So the number of negative roots is 1. Since the difference
between number of sign changes in coefficient of P(x) and the number of positive roots
must be even, we must have either zero or two positive roots. But as the sum of the
coefficients is zero, 1 is aroot. Thus we must have two and only two positive roots. Obviously
the other two roots are imaginary numbers. u

EXERCISE 3.6

. Discuss the maximum possible number of positive and negative roots of the polynomial

equation9x’ —4x®* +4x” =3x° +2x° + X’ + 7x* + 7Tx+2 =0.

. Discuss the maximum possible number of positive and negative zeros of the polynomials

x> =5x+6and x> —5x+16. Also draw rough sketch of the graphs.

. Show that the equation x’ —5x° +4x* +2x”> +1=0 has atleast 6 imaginary solutions.
. Determine the number of positive and negative roots of the equation x’ —5x° —14x’ =0.

. Find the exact number of real zeros and imaginary of the polynomial x* +9x” +7x” +5x” +3x.

@ EXERCISE 3.7

Choose the correct or the most suitable answer from the given four alternatives :

1.

. If fand g are polynomials of degrees m and n respectively,

A zero of x° +64 is
(1) 0 (2) 4 (3) 4i (4) -4

and ifh(x) =(f o g)(x), then the degree of / is

__'::.d"
Ot

(1)ymn 2y m+n 3) m A)n EQ'EI3'E-IP
. A polynomial equation in x of degree n always has
(1)ndistinct roots  (2)nreal roots (3)n complex roots  (4) at most one root.
.If a,B,and y are the zeros of x* + px” +gx+r, then Zl is
a
(-4 @)-£ 34 @ -
r r r p

. According to the rational root theorem, which number is not possible rational zero of

4x" +2x" —10x* =57 5 4
(H-1 (2)2 (3)g 4) 5
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6. The polynomial x’ —kx” +9x has three real zeros if and only if, k satisfies

(DHIkl<6 2)k=0 3)lkl>6 4) [k|>6

7. The number of real numbers in [0, 27] satisfying sin* x—2sin® x+1 is

(12 (2)4 31 (4) oo
8. If X’ +12x° +10ax +1999 definitely has a positive zero, if and only if
(1Ha=0 (2)a >0 3)a<0 4) a<0

9. The polynomial x’ +2x+3 has
(1) one negative and two imaginary zeros  (2) one positive and two imaginary zeros

(3) three real zeros (4) no zeros

10. The number of positive zeros of the polynomial z "C (-1)'x" is

Jj=0

(1o 2)n 3)<n 4 r

SUMMARY

In this chapter we studied
* Vieta’s Formula for polynomial equations of degree 2,3, and n>3.
* The Fundamental Theorem of Algebra : A polynomial of degree n >1 has at least one root

in C.
® * Complex Conjugate Root Theorem : Imaginary (nonreal complex) roots occur as conjugate ®
pairs, if the coefficients of the polynomial are real.

* Rational Root Theorem : Let a,x" +---+a,x+a, with a, =0 and g, =0, be a polynomial

with integer coefficients. If £, with (p,q) =1, is aroot of the polynomial, then p is a factor
q

of a, and ¢q is a factor of a, .

» Methods to solve some special types of polynomial equations like polynomials having only
even powers, partly factored polynomials, polynomials with sum of the coefficients is zero,
reciprocal equations.

* Descartes Rule : If p is the number of positive roots of a polynomial P(x) and s is the
number of sign changes in coefficients of P(x), then s— p is a nonnegative even integer.
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Inverse Trigonometric Functions

“The power of Mathematics is often to change one thing into another,
to change geometry into language”

g, oo - Marcus du Sautoy
PLUWYEK

4.1 Introduction

In everyday life, indirect measurement is used to obtain solutions to problems
that are impossible to solve using measurement tools. Trigonometry helps us to find
measurements like heights of mountains and tall buildings without using
measurement tools. Trigonometric functions and their inverse trigonometric

functions are widely used in engineering and in other sciences including physics.
. . . . . . John F.W. Herschel
They are useful not only in solving triangles, given the length of two sides of a right o erene

triangle, but also they help us in evaluating a certain type of integrals, such as

1
17

arcsine (x) of sine function was introduced by the British mathematician John F.W.Herschel (1792-1871).

1 . . . . . .
dx and J —— dx .The symbol sin "x denoting the inverse trigonometric function
X" +a

For his work along with his father, he was presented with the Gold Medal of the Royal Astronomical
Society in 1826.

An oscilloscope is an electronic device that converts electrical signals
into graphs like that of sine function. By manipulating the controls, we can
change the amplitude, the period and the phase shift of sine curves. The
oscilloscope has many applications like measuring human heartbeats, where
the trigonometric functions play a dominant role.

Let us consider some simple situations where inverse trigonometric functions are often used.

Ilustration-1 (Slope problem)
y
Consider a straight line y = mx +b. Let us find the angle § made by the line with

X -axis in terms of slope m . The slope or gradient m is defined as the rate of change of

A A
a function, usually calculated by m = Ey-From right triangle (Fig. 4.1), tan0 = Ey

. . . . A
Thus, tan @ = m . In order to solve for @, we need the inverse trigonometric function — Slope: m:zy: tan
X

called “inverse tangent function”. Fig. 4.1
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Ilustration-2 ( Movie Theatre Screens )
Suppose that a movie theatre has a screen of 7 metres tall. When someone
sits down, the bottom of the screen is 2 metres above the eye level. The angle

formed by drawing a line from the eye to the bottom of the screen and a line _\; 15

from the eye to the top of the screen is called the viewing angle.;ﬂ xm
In Fig. 4.2, 6 is the viewing angle. Suppose that the person sits x

metres away from the screen. The viewing angle @ is given by the function

2
0(x)=tan™ (2j —tan”' (—j Observe that the viewing angle 6 is a function of x.
X X

Ilustration-3 ( Drawbridge )

Assume that there is a double-leaf drawbridge as shown in ! s3]
Fig.4.3. Each leaf of the bridge is 40 metres long. A ship of 33 metres A
wide needs to pass through the bridge. Inverse trigonometric function A o
helps us to find the minimum angle 6 so that each leaf of the bridge ;" Fa
should be opened in order to ensure that the ship will pass through

the bridge. Fig. 4.3

In class XI, we have discussed trigonometric functions of real numbers using unit circle, where
the angles are in radian measure. In this chapter, we shall study the inverse trigonometric functions,
their graphs and properties. In our discussion, as usual R and 7Z stand for the set of all real numbers
and all integers, respectively. Let us recall the definition of periodicity, domain and range of six
@ trigonometric functions. &

Learning Objectives

Upon completion of this chapter, students will be able to

e define inverse trigonometric functions
e cvaluate the principal values of inverse trigonometric functions

e draw the graphs of trigonometric functions and their inverses

e apply the properties of inverse trigonometric functions and evaluate some expressions

4.2 Some Fundamental Concepts

Definition 4.1 (Periodicity)

A real valued function f is periodic if there exists a number p > 0 such that for all x in the

domain of f, x+ p is in the domain of f and f(x+ p)= f(x).
The smallest of all such numbers, is called the period of the function f .

or instance, sinx, cosx, cosecx, secx and e” are periodic functions wi erio 7
F t , sinx, , , d e dic funct th d 2

radians, whereas tan x and cot x are periodic functions with period 7 radians.
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Definition 4.2 (Odd and Even functions)

A real valued function f is an even function if for all x in the domain of f, —x is also in
the domain of f and f(—x)= f(x) .

A real valued function f is an odd function if for all x in the domain of f, —x is also in
the domain of fand f(—x)=-f(x).

For instance, x°, sinx, cosecx, tanx and cotx are all odd functions, whereas
x%,cosx and secx are even functions.

Remark

The period of f =g+ his lem{period of g, period of 4}, whenever they exist.

For instance, the period of y =cos6x+sin4xis 7w and that of y =cosx—sinxis 27.

4.2.1 Domain and Range of trigonometric functions

The domain and range of trigonometric functions are given in the following table.

Trigonometric function | gjp x | cOS x tan x cosec x sec x cot x
Domain R R R\{(2n+1)g,neZ} R\{nn, neZ} R\{(2n+1)72r,neZ} R\{nn, neZ}
Range [-1, 1] |[-1, 1] R R\(-1, 1) RA(-1, 1) R

4.2.2 Graphs of functions

Let f:R — R be areal valued function and f(x) be the value of the function f ata point x in
the domain. Then, the set of all points (x, f (x)),x € R determines the graph of the function /. In
general, a graph in xy -plane need not represent a function. However, if the graph passes the vertical
line test (any vertical line intersects the graph, if it does, atmost at one point), then the graph represents
a function. A best way to study a function is to draw its graph and analyse its properties through the
graph.

Every day, we come across many phenomena like tides, day or night cycle, which involve
periodicity over time. Since trigonometric functions are periodic, such phenomena can be studied
through trigonometric functions. Making a visual representation of a trigonometric function, in the
form of a graph, can help us to analyse the properties of phenomena involving periodicities.

To graph the trigonometric functions in the xy -plane, we use the symbol x for the independent
variable representing an angle measure in radians, and y for the dependent variable. We write
y=sinx to represent the sine function, and in a similar way for other trigonometric functions. In the

following sections, we discuss how to draw the graphs of trigonometric functions and inverse
trigonometric functions and study their properties.

4.2.3 Amplitude and Period of a graph

The amplitude is the maximum distance of the graph from the x -axis. Thus, the amplitude of a
function is the height from the x -axis to its maximum or minimum. The period is the distance required
for the function to complete one full cycle.
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Remark

(1) The graph of a periodic function consists of repetitions of the portion of the graph on an
interval of length of its period.
(i1) The graph of an odd function is symmetric with respect to the origin and the graph of an even

function is symmetric about the y -axis.
4.2.4 Inverse functions
Remember that a function is a rule that, given one value, always gives back a unique value as its
answer. For existence, the inverse of a function has to satisty the above functional requirement. Let

us explain this with the help of an example.

Let us consider a set of all human beings not containing identical twins. Every human being from
our set, has a blood type and a DNA sequence. These are functions, where a person is the input and
the output is blood type or DNA sequence. We know that many people have the same blood type but
DNA sequence is unique to each individual. Can we map backwards? For instance, if you know the
blood type, do you know specifically which person it came from? The answer is NO. On the other
hand, if you know a DNA sequence, a unique individual from our set corresponds to the known DNA
sequence. When a function is one-to-one, like the DNA example, then mapping backward is possible.
The reverse mapping is called the inverse function. Roughly speaking, the inverse function undoes
what the function does.

For any right triangle, given one acute angle and the length of one side, we figure out what the
other angles and sides are. But, if we are given only two sides of a right triangle, we need a procedure
that leads us from a ratio of sides to an angle. This is where the notion of an inverse to a trigonometric

function comes into play.
We know that none of the trigonometric functions is one-to-one over its entire domain. For

instance, given sin6=0.5, we have infinitely many 60 = %, %T, 13?7[, —%,—%,--- satisfying

the equation. Thus, given sin@, it is not possible to recover 6 uniquely. To overcome the problem of
having multiple angles mapping to the same value, we will restrict our domain suitably before defining
the inverse trigonometric function.

To construct the inverse of a trigonometric function, we take an interval small enough such that
the function is one-to-one in the restricted interval, but the range of the function restricted to that
interval is the whole range. In this chapter, we define the inverses of trigonometric functions with
their restricted domains.

4.2.5 Graphs of inverse functions

Assume that f is a bijective function and f'is the inverse of /. Then, y = f(x) if and only if
x= f'(y). Therefore, (a, b)is a point on the graph of f if and only if (b, a)is the corresponding
point on the graph of . This suggests that graph of the inverse function /' is obtained from the
graph of f by interchanging x and y axes. In other words, the graph of f~'is the mirror image of
the graph of f in the line y = x or equivalently, the graph of f~'is the reflection of the graph of f in
the line y =x.
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4.3 Sine Function and Inverse Sine Function
Let us recall that sine function is a function with R as its domain and [—1, 1] as its range. We

write y=sinxand y=sin"' x or y=arcsin(x) to represent the sine function and the inverse sine
function, respectively. Here, the symbol —1 is not an exponent. It denotes the inverse and does not

mean the reciprocal.

We know that sin(x+27)=sinx is true for all real numbers x. Also, sin(x+ p) need not be

equal to sinx for 0 < p <27 and for all x. Hence, the period of the sine function is 27 .

4.3.1 The graph of sine function

The graph of the sine function is the graph of y =sinx, where x is a real number. Since sine
function is periodic with period 27, the graph of the sine function is repeating the same pattern in
each of the intervals, ---, [ =27 ,0], [0, 27], [2x, 4x], [4x, 6x], ... . Therefore, it suffices to
determine the portion of the graph for x e [0, 27r]. Let us construct the following table to identify

some known coordinate pairs for the points (x, y) on the graph of y =sinx, x € [0, 27r].

. T ks s s 3m
x (in radian) 0 6 4 3 5 T > 27
1 1
y=sinx 0 3 5 73 1 0 - 0

It is clear that the graph of y =sinx, 0 <x < 2x, begins at the origin. As x increases from 0 to

T ) ) ) T 3
5 , the value of y =sinx increases from 0to 1.As x increases from — to 7 and then to —7T, the

value of y decreases from 1 to 0 and then to —1. As x increases from Y y=sinxin[0,27]

1
: amplitude
3T : P

~— to 27, the value of y increases from —1 to 0. Plot the points listed X

o7 Wﬁ
in the table and connect them with a smooth curve. The portion of the -1 2 :
graph is shown in Fig. 4.4. Fig. 4.4

The entire graph of y=sinx, xeR consists of

y=sinx, xR
repetitions of the above portion on either side of the
interval [O, 271] asy =sinx 1is periodic with period 27 . A

The graph of sine function is shown in Fig. 4.5. The

portion of the curve corresponding to 0 to 27 is called a 74/7T 3v o) WV" va
cycle. Its amplitude is 1. /i

Note Fig. 4.5
Observe that sinx >0 for 0 <x<x, which corresponds to the values of the sine function in

quadrants I and IT and sin x <0 for 7 < x <27, which corresponds to the values of the sine function

in quadrants III and IV.
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4.3.2 Properties of the sine function
From the graph of y =sinx, we observe the following properties of sine function:

(1) There is no break or discontinuities in the curve. The sine function is continuous.

(i1) The sine function is odd, since the graph is symmetric with respect to the origin.

. . . 3t © Sm ..
(i11)) The maximum value of sine functionis 1 and occursat x =---, — 7 , E s 7 ,-+-+ and the minimum
) n 3n Ix )
value is —1 and occurs at x =---, ECEIC I In otherwords, —1 <sinx <1 forall xe R.

4.3.3 The inverse sine function and its properties

The sine function is not one-to-one in the entire domain R . This is visualized from the fact that
every horizontal line y =5, —1<b <1, intersects the graph of y =sin x infinitely many times. In

other words , the sine function does not pass the horizontal line test, which is a tool to decide the

one-to-one status of a function. If the domain is restricted to [—5, E}, then the sine function

becomes one to one and onto (bijection) with the range [—1,1]. Now, let us define the inverse sine

function with [—1,1] as its domain and with [—%, %} as its range.

Definition 4.3

For —1< x <1, define sin”' x as the unique number y in {—% , %} such that sin y = x . In other

words, the inverse sine function sin™" : [-1, 1] — [—%,%} is defined by sin"'(x) = y if and only if

siny=x and y e rz
y y A

Note
. . . . . T
(1) The sine function is one-to-one on the restricted domain [—E, 5}, but not on any larger
interval containing the origin.

.. ) .. . ) noT . .
ii) The cosine function is non-negative on the interval | ——, = |, the range of sin”' x. This
g 25 g

observation is very important for some of the trigonometric substitutions in Integral Calculus.

(ii1)) Whenever we talk about the inverse sine function, we have,
sin:| %, % —[-11] and sin™:[-1,1]—> T
2 2 22

(iv) We can also restrict the domain of the sine function to any one of the intervals,

St 3m 3r x| [n 3n 3r 5S¢ L i )
S I U R ) el L et ...where it is one-to-one and its range is

[-1,1].

(vi) The restricted domain [— is called the principal domain of sine function and the values

of y=sin"' x,~1<x<1, are known as principal values of the function y =sin""' x.
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From the definition of y =sin™' x, we observe the following:
(i) y=sin"x ifand only if x=siny for -1 <x <1 and —%Syﬁ%.
(ii) sin(sin” x)=x if |x|<land has no senseif [x|>1.
(iii) sin”' (sinx)=x if —% <x< % . Note that sin”'(sin 27) = 0= 27
. .1 . 3
(iv) sin”'(sinx)=m-x if T <x<2® Notethat -Z<g—x<Z.
2 2 2 2
(v) y=sin"' x is an odd function.
Remark

. ) . 1 . 1 )
Let us distinguish between the equations sinx ZE and x=sin"' (Ej To solve the equation
. 1 . . ) 1
sinx = 5 one has to find all values of x in the interval (—oo, o) such that sinx = 5 However, to
. . 1 ) . )
find x in x=sin" (Ej , one has to find the unique value x in the interval [—%, %} such that
) 1
sinx =—.
2

4.3.4 Graph of the inverse sine function

. ) ) . T
The inverse sine function, sin 1:[—1, 1] - {—E, 5}, il y7r g ’
—1 1=
2
. . . . V2|
receives a real number x in the interval [—1, 1] as input and |75 | 4| y=sin'x
0 0 -1 o 1
gives a real number y in the interval {—E, 5} asoutput. As | V2| 7
2| 4
usual, let us find some points (x, y)using the equation ! g 2
Fig. 4.6

y=sin"'x and plot them in the xy-plane. Observe that the
. 7 . . .
value of y increases from ~T t0 = as x increases from —1 to 1. By connecting these points by a

smooth curve, we get the graph of y =sin”' x as shown in Fig. 4.6.

Note
The graph of y=sin"'x

(1) isalso obtained by reflecting the portion of the entire graph of y =sin x in the interval [— % , %}

about the line y = x or by interchanging x and y axes from the graph of y =sinx.

(i1) passes through the origin.

(iii) is symmetric with respect to the origin and hence, y =sin”' x is an odd function.
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We depict the graphs of both y =sinx, —% <x< % and y=sin"'x, —1<x<1 together for a
better understanding.

Y
A

SR
®-
%

1

Y

y=sinx in 75,6 y=sin'x
2°2

< X ¢ X

-1

\

SR

\

Fig. 4.7 Fig. 4.8 Fig. 4.9

Fig. 4.9 illustrates that the graph of y=sin"'x is the mirror image of the graph of
y =sinx, —% <x< % , in the line y = x and also shows that the sine function and the inverse sine

function are symmetric with respect to the origin.
Example 4.1
. . . 1) . .
Find the principal value of sin™' (—Ej (in radians and degrees).

Solution

1 1
Let sin”'| —— |=y.Then siny =——.
-3)-» y=—t
o o T T T
The range of the principal value of sin™ x is [—5, 5} and hence, letus find y [—5, 5} such

that sin y = —% . Clearly, y = —%.

Thus, the principal value of sin™' (—%) is —% . This corresponds to —30°. [

Example 4.2
Find the principal value of sin™' (2) , if it exists.

Solution
Since the domain of y = sin”' x is [—l, 1] and 2 ¢ [—l, 1] , sin”’ (2) does not exist. [ ]

Example 4.3

Find the principal value of

(i) sin™' (%j (i) sin™ (sin(—

Solution

w9

| wwinlz)

non|. .
25 is given by

We know that sin™ :[-1, 1] —> {— 5

sin”' x = y if and only if x =sin y for -1<x<1 and —%Syﬁ%. Thus,
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o

(i) sin™' L ,  since Tel-
4 4

2

ST T T . n [ non
(i) sin” | sin| —— | |=——, since ——e|——,—|.
3 3 3 0 22

,E and sin % =
2 | 4

5i-

(iii) sin™"| sin S—EJ = sin”' sin(n—Z = sin”'| sin = =£, since ~ e _Z,Z .
6 6 6) 6 6 22 ]

Example 4.4

Find the domain of sin™ (2 - 3x2)

Solution

We know that the domain of sin™' (x) is [-1,1].
This leads to—1<2—-3x> <1, which implies —3<-3x* <-1.

Now, -3<-3x, gives x° <1 and . (D)

—3x*<-1, gives x° 2% ..(2)

1 1
Combining the equations (1) and (2), we get 3 <x*<1.Thatis, ﬁ <|x|<1, which gives

xe{—l, —%}u{% 1}, since a<[|x|<b implies x e[-b,—a]|U]a, b]. -

EXERCISE 4.1

1. Find all the values of x such that

(1) —10r <x <107 and sinx=0 (i1)) -37 < x <37 and sinx=-1.

2. Find the period and amplitude of

(1) y=sin7x (i) y= —sin(%xj (ii1) y =4sin(—2x).

3. Sketch the graph of y =sin (%x} for 0<x<6r.

Y N
4. Find the value of (i) sin™ (sin (%D (ii) sin ‘(sm[f])_

5. For what value of x does sinx=sin"' x?

6. Find the domain of the following

(i) f(x):sinl[x;lJ (ii) g(x)zzsin*(zx—l)—%.

7. Find the value of sin™'| sin 5—” cos 4 +cos S—ﬂ sin 4 .
9 9 9 9
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4.4 The Cosine Function and Inverse Cosine Function

The cosine function is a function with R as its domain and [—1, 1] as its range. We write y =cosx
and y=cos' x or y=arccos(x) to represent the cosine function and the inverse cosine function,
respectively. Since cos(x+ 271) =cosx is true for all real numbers x and cos(x+ p)need not be

equal to cosx for 0< p<27m, xR, the period of y =cosx is27.

4.4.1 Graph of cosine function

The graph of cosine function is the graph of y =cosx, where x is a real number. Since cosine
function is of period 27, the graph of cosine function is repeating the same pattern in each of the
intervals ---,[-4m, —27], [-27,0], [0, 2x], [27, 4x], [4n, 6x], --- . Therefore, it suffices to
determine the portion of the graph of cosine function for x €[0,27]. We construct the following table

to identify some known coordinate pairs (x, y) for points on the graph of y =cosx, x e [0, 271'] .

i radi 0 il Gl il 7r 3
x (inradian) 5 4 3 > s > 27
1 1
Y =COoSX 1 ? E 5 0 -1 0 1
y

The table shows that the graph of y=cosx, 0<x <27, begins at y— cos.x in [0,27]

1
(0,1). As x increases from 0 to 7 , the value of y =cosx decreases from \ /
X

I to —1 .As x increases from 7 to 27, the value of y increases from [0 = T 3r 2m
2 2
—1 to 1. Plot the points listed in the table and connect them with a

1

smooth curve. The portion of the graph is shown in Fig. 4.10. Fig. 4.10

. C. ) = x, xeR !
The graph of y =cosx, x e R consists of repetitions of the above S

portion on either side of the interval [0, 277] and is shown in Fig. 4.11. ’4’\7*2”\’7 l"v 2 W w
.

From the graph of cosine function, observe that cosx is positive in the Fig. 4.11

first quadrant (for 0<x< %J , negative in the second quadrant (for % <x< nj

and third quadrant (for T<x< 37”} and again it is positive in the fourth quadrant (for % <x< 27rj.

Note

We see from the graph that cos(—x)=cosx for allx, which asserts that y =cosx is an even
function.
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4.4.2 Properties of the cosine function
From the graph of y =cos x, we observe the following properties of cosine function:
(1) There 1s no break or discontinuities in the curve. The cosine function is continuous.

(i1) The cosine function is even, since the graph is symmetric about y -axis.

(ii1) The maximum value of cosine function is 1 and occurs at x=...,—2x,0,2x, ... and the
minimum value is — 1 and occurs at x=...,—m, 7,37, 57, ..... In other words, —1 <cosx <1
forall xeR.

Remark

(1) Shifting the graph of y=cosx to the right gradians, gives the graph of y = cos(x—%j ,

which is same as the graph of y =sinx. Observe that cos(x — %j = cos (% - x] =sinx.

(i) y=Asinax and y=Bcosfx always satisfy the inequalities —|A4|< Asinax<|4| and

. . . 2 .
—|B| < Bcos Bx <|B|. The amplitude and period of y = A sinaxare |4| and |—7T , respectively
a
2 .
and those of y = Bcos fx are |B| and |Fﬂ , respectively.

The functions y = Asinax and y = Bcos x are known as sinusoidal functions.

(ii1) Graphing of y = Asinax and y = Bcos fx are obtained by extending the

portion of the graphs on the intervals {0 , 2—”& and {0 , %} , respectively.
o

Applications

Phenomena in nature like tides and yearly temperature that cycle repetitively through time are
often modelled using sinusoids. For instance, to model tides using a general form of sinusoidal
function y =d +acos(bt—c), we give the following steps:

(1) The amplitude of a sinusoidal graph (function) is one-half of the absolute value of the difference

of the maximum and minimum y -values of the graph.

Thus, Amplitude , a = % (max— min) ; Centre lineis y=d, where d = %( max + min)

(i1) Period, p =2 x (time from maximum to minimum) ; b=—

(iil) ¢ =bx time at which maximum occurs.

Model-1

The depth of water at the end of a dock varies with tides. The following table shows the depth
(in metres ) of water at various time.

‘ ‘ Chapter 4 Inverse Trigonometry.indd 139

time, ¢ 12 am 2 am 4 am 6 am 8 am 10 am 12 noon
depth 3.5 4.2 3.5 2.1 1.4 2.1 3.5
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Let us construct a sinusoidal function of the form y =d +acos (bt - c) to find the depth of water
attime ¢. Here, a=1.4 ; d=28 ; p=12 ; b=% ; c:%,

The required sinusoidal function is y =2.8+1.4 cos (% t— %) .

Note
The transformations of sine and cosine functions are useful in numerous applications. A circular
motion is always modelled using either the sine or cosine function.

Model-2
A point rotates around a circle with centre at origin and radius 4. We can obtain the y -coordinate

of the point as a function of the angle of rotation.

For a point on a circle with centre at the origin and radius a,

4 units

4
the y -coordinate of the point is y =asin@, where 0 is the 3
2
1

angle of rotation. In this case, we get the equation

y(0)=4sin6 , where 0 is in radian, the amplitude is 4 and

—4r —3m 2r -
the period is 27 . The amplitude 4 causes a vertical stretch 7 _2

of the y -values of the function sinf by a factor of 4.

\/
4.4.3 The inverse cosine function and its Fig. 4.12
properties
The cosine function is not one-to-one in the entire domain R . However, the cosine function is
one-to-one on the restricted domain [0, 7z ]and still, on this restricted domain, the range is [-1, 1].

Now, let us define the inverse cosine function with [—1, 1]as its domain and with [0, 71] as its range.

Definition 4.4
For —1<x <1, define cos™' x as the unique number y in [O, 71] such that cos y = x. In other

words, the inverse cosine function cos™’ :[—1, 1] - [0, 71] is defined by cos™'(x) = y if and only if

cosy=xandye[0, 7].

Note

(1) The sine function is non-negative on the interval [0, 71'] , the range of cos™ x . This observation
is very important for some of the trigonometric substitutions in Integral Calculus.
(ii) Whenever we talk about the inverse cosine function, we have cosx:[0, 7] —[-1, 1] and

cos” x:[-1, 1] >0, z].
(i11) We can also restrict the domain of the cosine function to any one of the intervals

- [-m, 0],[7, 2], -, where it is one-to-one and its range is [-1, 1].
The restricted domain [O, 7'[] is called the principal domain of cosine function and the values of

y=cos ' x,-1<x<1, are known as principal values of the function y =cos™ x.
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From the definition of y =cos™ x, we observe the following:
(i) y=cos'x ifand only if x=cosy for -1<x<1and 0<y<rx.
(i1) cos (cos‘1 x) =x if |x| <1and has no sense if |x| >1.

(iii) cos™ (cosx)=x if 0<x<x ,therange of cos™ x. Note that cos™ (cos37) = 7.

4.4.4 Graph of the inverse cosine function

The inverse cosine function cos™ :[—1, 1] — [0, 71], receives a real number x in the interval
[—1, 1] as an input and gives a real number y in the interval [O, n] as an output (an angle in radian
measure). Let us find some points (x, y) using the equationy =cos”' x and plot them in the
xy -plane. Note that the values of y decrease from 7 to 0 as x increases from —1 to 1. The inverse

cosine function is decreasing and continuous in the domain. By connecting the points by a smooth

curve, we get the graph of y =cos™ x as shown in Fig. 4.14

y v
1 ) x y 1
y=cosx in [0, r] -1 ™ T y=cos’'x
G
T | 4 T
» ™ 2
0 ™ T * U
2 V2T
2 4 < 5 > !
~1 1| o -l !
/ \
Fig. 4.13 Fig. 4.14

Note
(i) The graph ofthe function y = cos™ x isalso obtained from the graph y = cos x by interchanging
x and y axes.
(ii) For the function y = cos™' x, the x -intercept is 1 and the y -intercept is T
(iii) The graph is not symmetric with respect to either origin or y -axis. So, y =cos™' x is neither

even nor odd function.

Example 4.5
V3

Find the principal value of cos™ [ 5

Solution

Let cos™ ﬁ =y. Then, cosyzﬁ.
2 2
The range of the principal values of y =cos™ x is [0, 7].

So, let us find y in [0, 7] such that cosy = ?

But, cosX = v3 and ~ ¢ [0,7]. Therefore, y = T
6 2 6
N
Thus, the principal value of cos™| — | is —.
prREIP ( 2 )% O
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Example 4.6
) ) af 1 .. r T O r
Find (i) cos ( _\/Ej (i) cos (cos( 3)] (ii1) cos (cos(—6 D

Solution
It is known that cos™' x: [—1, 1] - [O, 71] is given by
cos 'x=y ifand only if x=cosy for -1<x<land 0<y<r.
Thus, we have
(i) cos™ _ L =3—7T, since 37 e[0, 7] and cos3—ﬂ = COS(TL’ _E] = —cosZ= —L.
4 4 4 4 2

J2 4
(ii) cos™ cos(—zj = cos” cos[zj =T since - L ¢ [0, 7], but e [0, 7].
3 3 3 3 3

O 1 St . 1 T \/g Sz Sz
(ii1) cos™ | cos o =Z_, since cos =cos| T+— |=———=cosS s and ?E[O,ﬂ.’].

Example 4.7
Find the domain of cos™ [

Solution
By definition, the domain of y =cos™' x is —1<x <1 or |x|<1. This leads to

2+sinx L .
-1< <1 which is sameas —3<2+sinx<3.

@ R @

So, —5<sinx <1 reducesto —1<sinx <1, which gives

2
2

—sin'()<x<sin'(1) or —% <x<

Thus, the domain of cos™ (2+§1nxj is {—%, %}

EXERCISE 4.2

1. Find all values of x such that

(1) -6mr <x <67 and cosx=0 (i) =57 <x <57 and cosx=1.
2. State the reason for cos™ {cos(—%ﬂ * —%.

3. Is cos '(—x)=m—cos '(x) true? Justify your answer.
4. Find the principal value of cos™ (%j .

5. Find the value of
. 1 1 .. 1
1) 2cos™'| = |+sin”'| = 1) cos™'| = |+sin' (-1
@) 2c0"(Jrsin (3] () cos”( 3 ]sin” (1)

(iii) cos™ [cos 7 cos - —sin X sin ij .
7 17 7 17
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) 1—
6. Find the domain of (i) f(x)=sin"' [%j +cos” (#] (i) g(x)=sin"' x+cos™' x

7. For what value of x, the inequality % <cos™ (3x—1) <z holds?

8. Find the value of

oo (o 4] oo ()

4.5 The Tangent Function and the Inverse Tangent Function

We know that the tangent function y =tanx is used to find heights or distances, such as the

sin x

height of a building, mountain, or flagpole. The domain of y =tanx= does not include values

COS X
of x, which make the denominator zero. So, the tangent function is not defined at

3z © © 3r . ) .
X=eee,——, —— —,---. Thus, the domain of the tangent function y=tanx is

27 272 2
{x:xeR,x¢%+kn,keZ}: U (21{;1%, 2k2+37rj and the range is (—oo,oo).The tangent

k=—0

function y =tanx has period .

4.5.1 The graph of tangent function
Graph of the tangent function is useful to find the values of the function over the repeated period

of intervals. The tangent function is odd and hence the graph of y =tan x is symmetric with respect

to the origin. Since the period of tangent function is 1, we need to determine the graph over some

interval of length 7 . Let us consider the interval (—E , zj and construct the following table to draw

T T
the graph of y=tanx, xe| ——, — |.
22
x (inradian) _r _r _r 0 T T T
3 4 6 6 4 3
y=tanx -3 -1 —V3 ﬁ 1 3
3 3
. . . T T y i
Now, plot the points and connect them with a smooth curve for a partial »=twnx in [75,5]8 |
I T . T . ) 6 2
graph of y =tanx,where —— < x<—. If x isclose to — but remains less s 2
2 2 2 g ¢ |iE
T 7 2| /ig
than E , the sinx will be close to 1 and cos x will be positive and close to L - N
2 2
T . sinx . . 3 3
0. So, as x approaches to > the ratio is positive and large and thus
cos X
approaching to oo. :
Fig. 4.15
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Therefore, the line x :% is a vertical asymptote to the graph. Similarly, if x is approaching to

is negative and large in magnitude and thus, approaching to —o. So, the line

T . sinx
——, the ratio
2 cos X

X = —% is also a vertical asymptote to the graph. Hence, we get a branch of the graph of y =tanx

for - < x <Z as shown in the Fig 4.15. The interval (—%, %j is called the principal domain of

y=tanx.
y=tanx
Since the tangent function is defined for all real numbers except at '

3 . : . l :
x=2n +1)5, neZ, and is increasing , we have vertical asymptotes 5 ;

x A N/AN VARYAR
x=2n+ 1)5, neZ . As branches of y=tanx are symmetric with —3?'71 T —% © % T 37”
respect to x=nn,neZ , the entire graph of y=tanxis shown in
Fig. 4.16. L

Fig. 4.16

Note

. . .. s 3 .
From the graph, it is seen that y =tan x is positive for 0 <X < 5 and 7 <x< 21 ; y=tanx is
2

. T 3r
negative for 5<x<7r and 7<x<27r.

4.5.2 Properties of the tangent function

From the graph of y =tan x, we observe the following properties of tangent function.

(1) The graph is not continuous and has discontinuity points at x = (2n + 1)%, new.
(i1) The partial graph is symmetric about the origin for —% <x< % .

(ii1) It has infinitely many vertical asymptotes x = (2n + 1)%

, nel.
(iv) The tangent function has neither maximum nor minimum.

Remark
(1) The graph of y = atanbx goes through one complete cycle for

T cx< T andits period is i
I i
(i1) For y = atanbx, the asymptotes are the lines x = ﬁ + |%k, keZ.

(ii1) Since the tangent function has no maximum and no minimum value, the term amplitude for
tan x cannot be defined.
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4.5.3 The inverse tangent function and its properties

The tangent function is not one-to-one in the entire domain R\ E+kﬂ’ ke Z}. However,

tan x : (— 2 Ej — Ris a bijective function. Now, we define the inverse tangent function with R

as its domain and (— 2 5] as its range.

Definition 4.5

. . T
For any real number x, define tan™' x as the unique number y in (_E , Ej such that tan y = x.

In other words, the inverse tangent function tan™" : (—oo, oo) — (—%, %j is defined by tan~'(x) = y

T

if and only if tan y = x and ye(—%,gj.

From the definition of y =tan™' x, we observe the following:
(i) y=tan™' x ifand only if x =tany for xR and —%<y<%.
(i1) tan(tan*1 x) = x for any real number x and y =tan"' x is an odd function.
(iii) tan™ (tanx)=x ifand only if —% <x< % . Note that tan™' (tanz ) =0 and not 7 .

Note

(1) Whenever we talk about inverse tangent function, we have,
tan:| - Z 2| S5R and tan:R—| - Z. 2.
22 2°2
(i1) The restricted domain (—%, %) is called the principal domain of tangent function and the

values of y=tan"' x, xe R, are known as principal values of the function y =tan' x.

4.5.4 Graph of the inverse tangent function
y=tan"' x is a function with the entire real line (—oo, oo) as its domain and whose range is
TT .. s 7 4
(_E’ Ej . Note that the tangent function is undefined at 5 and at 3 So, the graph of y =tan™ x
lies strictly between the two lines y = —% and y= %, and never touches these two lines. In other
words, the two lines y = —% and y = % are horizontal asymptotes to y =tan ™' x.
Fig. 4.17 and Fig. 4.18 show the graphs of y =tanx in the domain (—%, %j and y=tan ' x

in the domain (—o0, ), respectively.
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. y .
y=tanx in (—E,Ej v
2028 '

=
<
[

isymptote
&~
ois| Tasymptote
|
|

Aoy (@RI
\
98]
|
N
|
Q
N
W

|3

Fig. 4.17 Fig. 4.18

Note
(1) The inverse tangent function is strictly increasing and continuous on the domain (—oo, oo).

(ii) The graph of y =tan™' x passes through the origin.

iii) The graph is symmetric with respect to origin and hence, y =tan™' x is an odd function.
grap y P g y

Example 4.8
Find the principal value of tan™ (\E ) .

Solution

Let tan*(\/g):y.Then, tany:\/g. Thus, yz%. Since %e(—%,%j )

Thus, the principal value of tan™ (\/§ ) is %
|

Example 4.9
Find (i) tan’l(—\/g) (if) tanl(tan?’?ﬂj (iii) tan(tan"'(2019))

Solution
(i) tan™ (—\/g)ztan*1 tan[—zj =T since -Ze (_E’E] _
3 3 3 22
(ii) tan™ [tan 3—”} .
5
Letus find 9 [—%, %J such that tang = tan%r.

Since the tangent function has period 7, tan 3?# =tan (3?” — ﬂ'j = tan (— 2?”) .

2
Therefore, tan™' (tan?)—ﬂjftan"l tan[—z—nj = —2_7[, since _r e(_E’E).
5 5 5 5 2°2

(ii1) Since tan(tan"1 x) =x,x€ R, we have tan (tan_1(2019)) =2019.
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Example 4.10

Find the value of tan™' (1) +cos™ (%j +sin” (—%j .

Solution

Let tan'(=1)=y. Then, tany=—1= —tan% = tan(—%j .

As—Ze (—1 E] , tan"'(=1)= —%.

4 272
1 o
Now, cos (E] =y implies cos y =—=cos—.
T (1 7
As —e[0,7], cos™ (—j = —
2 3
Now, sin”' (——j =y implies siny=——= sin(——)

Therefore, tan'(—1)+cos™ 1 psint| = =42 2T
2 4 3 6 12 [
Example 4.11
Prove that tan(sin_l x) S = -1l<x<l.
I-x
Solution
If x=0, then both sides are equal to 0. .. (1)

Assume that 0<x<1.

Let O =sin"' x. Then 0 <6 <~ Now, sinf == gives tan0 =
2 1 1-x?
X

. (2
= )
X

Assume that—1 < x < 0. Then, 0 =sin "' x gives —% <6 < 0. Now, sin0 =% gives tan 6 =

|
Hence, tan(sm x)=

2
1—x
X

: N
o )

Equations (1), (2) and (3) establish that tan<sin‘l x) - =, —l<x<l. -
I-x

In this case also, tan (sin*1 x) =

EXERCISE 4.3

1. Find the domain of the following functions :

(i) tan”' (V9 —x (i1) ltan_1 1-x2)-Z.
2

4
2. Find the value of (i) tanl(tan%rj (i) tan™ (tan(—%jj.
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3. Find the value of

(i) tan (tanl (%TD (ii) tan (tzm’1 (1947)) (iii) tan (tan’1 (—0.2021)) .
4. Find the value of (i) tan| cos™ | — |—sin | —— (i1) sin| tan~ | — [—cos™ | — | |.
2 2 2 5
(ii1) cos (sin"l (%j —tan”' (%D

4.6 The Cosecant Function and the Inverse Cosecant Function

Like sine function, the cosecant function is an odd function and has period 27 . The values of

cosecant function y =cosec x repeat after an interval of length 27r .Observe that y = cosec x = —
sin x

is not defined when sinx=0. So, the domain of cosecant function is R\{nn:neZ}. Since

—1<sin x <1, y=-cosec x does not take any value in between —1 and 1. Thus, the range of cosecant

function is (—o0,1]U[1,0).

4.6.1 Graph of the cosecant function

In the interval (0, 27), the cosecant function is

@ A | V= cosecx in (0,27|r) @
continuous everywhere except at the point x = . It has : ! !
| |
neither maximum nor minimum. Roughly speaking, the 2 : b= :
I l 4
value of y = cosec x falls from oo to 1 for x € O,E , it . : X
2 1 o T m 3 2
- 2 y=—1 2 '
raises from 1 to oo for x e {%,n) . Again, it raises from -2 i i
-3 | |
. —4 i i
y
—oo to—1 for x e(n,T} and falls from —1 to —oo for Fig. 4.19
XG[%,QJZ’). ]]/ y = cosec x
L | _
R | l
AN AT I A
The graph of y=cosecx, xe(0,2m)\{r}is A 2 A O
| I\ /1 ' P\ /i [
X 11 ! ! X
shown in the Fig. 4.19. This portion of the graph is A L=l
= —i37rflk7r —}7r o T 2 rTr 4|i7r =
repeated for the intervals ---,(—471,—271)\{—3%} , g i v ay
| U ! by |
| |
(=27,0)\{-7}.(27.47)\ {32} (47,67 )\ {57} [ T
| o ! A
| |
The entire graph ofy=cosec xis shown in b S
Fig. 4.20. Fig. 4.20
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4.6.2 The inverse cosecant function

The cosecant function, cosec :[—%,0) v, (0, %} — (—o0,—1] U [1,0) is bijective in the
restricted domain [— %,0] U (O, %} . So, the inverse cosecant function is defined with the domain

(—o0,—1] U [1,00) and the range [— %,Oj U (0, %} )

Definition 4.6

The inverse cosecant function cosec™ : (—o0,—1] U [1,00) — [— %,0) v, [0, %} is defined by

cosec ' (x) = y if and only if cosecy=x and y e {— %,Oj W/ (O, %} . ‘

4.6.3 Graph of the inverse cosecant function

The inverse cosecant function, y =cosec™'x is a function whose domain is R\ (- 1, 1) and the

range is {— %, %}\ {0}. That is, cosec i (—00,—1] U [l,00) > [— %,Oj ) (0, %} .

Fig. 4.21 and Fig. 4.22 show the graphs of cosecant function in the principal domain and the

inverse cosecant function in the corresponding domain respectively.

-,

I
»y = cose¢x in
I

. __T
IR J=s 5
\
Fig. 4.21 Fig. 4.22

4.7 The Secant Function and Inverse Secant Function

The secant function is defined as the reciprocal of cosine function. So, y=sec x = is

COS X

defined for all values of x except when cos x =0 .Thus, the domain of the function y =sec x is

R\{Qn + l)% ‘ne Z} .As —1<cos x <1, y=sec x does not take values in (-1, 1). Thus, the range

of' the secant function is (—o0,1]U[1,) . The secant function has neither maximum nor minimum. The
function y =sec x is a periodic function with period 27 and it is also an even function.
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4.7.1 The graph of the secant function b

.. T 3m .
The graph of secant function in 0 <x <27, x#—,—, is

y=secx in [0,27]

7
5
3

shown in Fig. 4.23. In the first and fourth quadrants or in thei

interval Y <x< EX y=secx takes only positive values,

-7
whereas it takes only negative values in the second and third

quadrants or in the interval % <x< 37” . Fig. 4.23

T 37w . . .
For 0<x<2m, x= PRPE the secant function is continuous. The value of secant function

raises from 1 to oo for x € [O,%j ; itraises from —oo to —1 for x (%,77,’:| . It falls from —1 to —o0

for xe{n,?’?ﬂj and falls from oo to 1 for XE(%,Zﬂ}.

As y=secx is periodic with period 27, the same y

segment of the graphfor 0 <x <27, x # %,3?% ,1srepeated E E [

n [2%4”]\{57%,77%}’ [471,671]\{977[,%}, coandin T S 00 7 an s 3n o dn

[—4n,—2n]\{—7—”,—5—”}, [—2%,0]\{—3—ﬂ,—£}.
27 2 27 2

Now, the entire graph of y=secx is shown in

Fig. 4.24.

4.7.2 Inverse secant function

The secant function,sec x:[O,n]\{%}—)R\(—l,l) is bijective in the restricted domain

[O,n]\{%}. So, the inverse secant function is defined with R\(-11) as its domain and with

[0, 7]\ {%} as its range.

Definition 4.7

The inverse secant function sec™ :R\(—l,l)—)[O,n]\{%} is defined by sec”'(x)=y

whenever secy =x and y €[0,7]\ {%}
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4.7.3 Graph of the inverse secant function

The inverse secant function, y =sec™' x is a function whose domain is R\ (—1,1) and the range

is [0,7‘[]\{%}. That is, sec™ :R\(—l,l)—)[o,n]\{%},
Fig. 4.25 and Fig. 4.26 are the graphs of the secant function in the principal domain and the

inverse secant function in the corresponding domain, respectively.

/

y=secx in[0,7]\ {7}

2

________________ T(---___________yzﬂ'
7f _r
---------------- 5-------------)1—2

Fig. 4.25 Fig. 4.26

Remark

A nice way to draw the graph of y =secx or cosec x:

(i) Draw the graph of y = cos x or sin x

(i1)) Draw the vertical asymptotes at the x -intercepts and take reciprocals of y values.

4.8 The Cotangent Function and the Inverse Cotangent Function

The cotangent function is given by cotx = . It is defined for all real values of x, except

tan x
when tanx=0 or x=nnr,neZ. Thus, the domain of cotangent function is R\ {n Tine Z} and its

range is (—oo,oo). Like tan x, the cotangent function is an odd function and periodic with period .

4.8.1 The graph of the cotangent function

The cotangent function is continuous on the set (0,27)\{x}. Let us first draw the graph of
cotangent function in (0, 271) \ {77,'} In the first and third quadrants, the cotangent function takes only
positive values and in the second and fourth quadrants, it takes only negative values. The cotangent
function has no maximum value and no minimum value. The cotangent function falls from oo to 0

z 7

for xe(O,%} ; falls from 0 to —oo for xe[%,nj ; falls from ocoto O for xe(z ' }md falls

from 0 to —oo for xe{%{, 277).
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Fig. 4.27 Fig. 4.28

The graph of y =cotx, x €(0,27)\{x}is shown in Fig 4.27. The same segment of the graph of
cotangent for (0,27)\{r} is repeated for (27,47)\{37} (4, 6w)\{5x},--, and for -,
(—47r,—27r)\{—3ﬂ} , (—27r, 0)\{—7‘[} . The entire graph of cotangent function with domain
R\{nm :neZ} is shown in Fig. 4.28.

4.8.2 Inverse cotangent function
The cotangent function is not one-to-one in its entire domain R\ {mr ‘ne Z} . However,
cot : (0, ) — (—o0, ) is bijective with the restricted domain (0, 7). So, we can define the inverse

cotangent function with (—oo,oo) as its domain and (0, 71) as its range.

| Definition 4.8
The inverse cotangent function cot™ :(—o0, ) — (0, 7) is defined by cot™ (x) =y if and only if
coty=xandye(0,7).

4.8.3 Graph of the inverse cotangent function

The inverse cotangent function, y =cot™' x is a function whose domain is R and the range is
(0,m). That is, cot™ x:(—o0,0) = (0, 7).

Fig. 4.29 and Fig. 4.30 show the cotangent function in the principal domain and the inverse
cotangent function in the corresponding domain, respectively.

y = cotx in (0,m) :
y=cot'x
; ™

Y

\
|
— O
0|
=
/
=
|
'/
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4.9 Principal Value of Inverse Trigonometric Functions
Let us recall that the principal value of a inverse trigonometric function at a point x is the value

of the inverse function at the point x, which lies in the range of principal branch. For instance, the

_ 3. ™ . T . .
principal value of cos™ (TJ 1s P since s € [0, n] When there are two values, one is positive and

the other is negative such that they are numerically equal, then the principal value of the inverse
trigonometric function is the positive one. Now, we list out the principal domain and range of
trigonometric functions and the domain and range of inverse trigonometric functions.

Princi Range of
. rincipal Inverse . Lo
Function . Range . Domain Principal
Domain Function
value branch
) T T ) T T
sme ECD) [-L1] sin~ [-1,1] EAE)
cosine [0, 7] [-L1] cos™ [-1,1] [0,7]
tangent (—E E) R 1 R T
g 2 > 2 tan 2 ’ 2
- T T T
cosecant {7 ’ E}\ O RV -1, 1) cosec R\ (-L1) |:_ bk E:I \{0}
T 7
secant [O,H]\{E} R\(-11) sec”' R\ (-11) [Om]\{E}
cotangent (0, 7) R cot™' R (0,7)

Example 4.12
Find the principal value of
(i) cosec™ (-1) (ii) sec™ (-2).

Solution
(i) Let cosec™ (=1)=y. Then, cosec y=-1

Since the range of principal value branch of y = cosec™'x is [—%, %} \ {0} and

cosec (—£J=—l, we have y=—z. Note that —Ee —E, r \{O}.
2 2 2 2 2

Thus, the principal value of cosec™ (—1) is —% .
(ii) Let y=sec™ (—2). Then, secy=-2 .

By definition, the range of the principal value branch of y =sec™ x is [O,n]\{%}.

Letus find y in [0,7]- {%} such that secy=-2.
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But, secy=—2 = cosy=——
Now, COSy=—l=—Cos£:cos r-Z _cosz— Therefore, y_z_”
2 3 3 3 3

) 2 . .2
Since <% [0, ]\ 2 the principal value of sec™ (-2) is T
3 2 3 u
Example 4.13

23

Find the value of sec™ (_TJ )

Solution

Let sec™ (—%):9. Then, secO = _2 where 6 E[O,TL’] { } Thus, cos 6 ——ﬁ.

NG)
51 T T NE) _2V3 NE) _ S
Now, cos — =cos| 7 —— |=—cos| — |=——. Hence, sec”' —
6 6 2 3 6

6
Example 4.14

If cot™ (lj =0, find the value of cos6 .
7 o
“
Solution 7
By definition, cot™' x € (0, 7). /
. = .

Therefore, cot™ (%j =60 implies 0 €(0,7).

But cot™ (%J =0 1mplies cotf = % and hence tan 0 =7 and 0 is acute.

|
. . . 1
Using tan@ = % , we construct a right triangle as shown . Then, we have, cos6 = m
Example 4.15
Show that cot™ 1. sec”' x, |x[>1.
Vx* -1
Solution
1 1
Let cot™' =a. Then, cota = and o is acute.
(\/xz—lj NEE| p ':|
><
We construct a right triangle with the given data.
From the triangle, seca = % =x.Thus, a=sec x. @ - [
Hence, cot™ ( ! ] =sec' x, [x[>1. -
Vx® -1
EXERCISE 4.4

1. Find the principal value of

(1) sec” (%j (ii) cot‘l(\/g ) (111) cosec_l(—\/i)
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2. Find the value of
(1) tan™' (\/g)—sec*1 (-2) (i1) sin™ (= 1) + cos™ (%j + cot™ (2)

(iii) cot (1) + sin™! (—?] —sec! (—\/5)

4.10 Properties of Inverse Trigonometric Functions

In this section, we investigate some properties of inverse trigonometric functions. The properties
to be discussed are valid within the principal value branches of the corresponding inverse trigonometric
functions and where they are defined.

Property-I

(i) sin"'(sin@) =6, if@e[—%, ﬂ (i) cos'(cos@) =0, if 6 [0, x].

(iii) tan"'(tan0) =0, ifee(—%, %) (iv) cosec'(cosecO) =0, if ee{—%, 5}\{0}

(v) sec”'(secO) =0, if 6 [0, 7] \ {%} (vi) cot'(cotf)=0, if Oe(0, ).
Proof

All the above results follow from the definition of the respective inverse functions.

For instance, (1) let sin@=x; 0O¢€ {—%, %}

Now, sinf = x gives 0 =sin"' x, by definition of inverse sine function.
Thus, sin”' (sin0)=0.
Property-I1
(1) sin(sin‘1 x) =x, if xe[-1,1]. (i1) cos(cos"1 x) =x, if xe[-1,1]
(iii) tan(tan'x)=x, if xeR (iv) cosec(cosec' x)=x, if xeR\(-11)

x, if xeR\(-L1)  (vi) cot(cot”x)=x, ifxeR

v) sec(sec*1 x)
Proof
(i) For xe[-1,1], sin™ x is well defined.

Let sin~' x=6 . Then, by definition 0 € [—%, %} and sinf =x

Thus, sin® = x implies sin (sin*1 x) =x.
Similarly, other results are proved.

Note
(i) For any trigonometric function y = f(x), we have f ( [ (x)) =x for all x in the range of f .

This follows from the definition of 7 '(x). When we have, f ( gil(x)), where
g '(x)=sin"" x or cos™" x, it will usually be necessary to draw a triangle defined by the inverse
trigonometric function to solve the problem. For instance, to find cot(sin_] x) , we have to

draw a triangle using sin~' x. However, we have to be a little more careful with expression of
the form /7' ( f(x)).
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(ii) Evaluation of f'[f(x)], where f is any one of the six trigonometric functions.
(a) If x is in the restricted domain (principal domain) of f, then 7'[ f(x)]=x.

(b) If x is not in the restricted domain of f*, then find x, within the restricted domain of f
such that f(x)= f(x,). Now, £ '[f(x)]=x, . For instance,

x if xe —E,E
2 2

sin”' (sinx) =
x, if xg¢|——, —|,wheresin x=sinx, and x, €| ——, — |.
2°2 2°2

Property-III (Reciprocal inverse identities)

(i) sin™' (lj= cosec "x, if xeR\(-1,1). (ii) cos™ (lj= sec 'x, if xeR\(-11).
x X

(1 cot ' x if x>0
(i11) tan™ | — |=

x —m+cot ' x if x<O.
Proof . .
(1) If xe R\(—l, 1) ,then—e [—l, 1] and x=0. Thus, sin™' (—j is well defined.
X

T

X
-=, E}\{O}and sinezl.
2 2

Let sin”' (lj = 0. Then, by definition 6 € [
X

X

Thus, cosecO = x , which in turn gives 6 = cosec™' x.

Now, sin™ (lj = @=cosec”' x. Thus, sin™ (lj =cosec 'x, xeR\ (—1, 1).

X X

Similarly, other results are proved.

Property-IV (Reflection identities)
(i) sin”'(=x)=—sin""x, if xe[-1,1].
(ii) tan™'(=x)=—tan" x, if xeR.
(iii) cosec™'(—x)=— cosec 'x, if |x| >l orxe ]R\(—l, 1).
(iv) cos'(=x)=m—cos' x, if xe[-1,1].
(v) sec'(—x)=m—sec' x, if |x|21 or xe]R\(—l, 1).
(vi) cot'(=x)=m—cot'x, if xeR.

Proof
(1) If xe [—1, 1] ,then —x € [—1, 1]. Thus, sin~'(—x)is well defined

Let sin”'(—x) =0 . Then 0 {—%, %} and sinf =-x.
Now, sinf =-x gives x =—sinf = sin(—0)
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From x =sin(—0), we must have sin™' x =—0 , which in turn gives 0 =—sin"' x.
b b

Hence, sin™'(-x) =—sin" x.
(iv) If xe[-1,1], then —xe[-1,1].  Thus, cos™(-x)is well defined
Let cos'(—x)=6.Then 6 €[0, 7] and cos 6 =—x.
Now, cosf =—x implies x=—-cos6 =cos(z—0).
Thus, 7 —0 =cos™' x, which gives 0 =7 —cos ™' x.

Hence, cos ' (—x)=m —cos ' x.
Similarly, other results are proved.
Note

(i) The inverse function of an one-to-one and odd function is also an odd function. For instance,
y =sin"' x is an odd function, since sine function is both one-to-one and odd in the restricted

domain _E’E .
2 2

(11) Is the inverse function of an even function also even? It turns out that the question does not
make sense, because an even function cannot be one-to-one if it is defined anywhere other
than 0. Observe that cos™ x and sec™ x are not even functions.

Property-V ( Cofunction inverse identities )

o - o Lo
(i) sin”' x+cos lx:E, xe[-1,1]. (i) tan™' x +cot 1x:E, xeR.

(iii) cosec'x+sec” x = %, xeR\(-1,1) or [x|>1.
Proof
(i) Here, xe[-1,1]. Let sin” x=0.Then 6 e[—%, %} and sin@ =x.

Note that —~<<Z = 0<Z-9<r.
2 2 2
So, cos E—Q =sin 6 = x, which gives cos_'x=£—9=£—sin"1x.
2 2 2
Hence, cos*1x+sin*1x:%, Ix|<1.
(ii) Let cot'x=60. Then, cot@ =x, 0<O<rm and xeR.
T
Now, tan(3—9j=cot9=x. .. (1)

Thus, for x € R, tan(tan™' x) = x and (1) gives tan(tan™' x) = tan(% - 0).

Hence, tan(tan ' x)=tan (% —cot™ xj . (2)

) . T ow LT
Note that 0 <cot™ x <7 gives —5<——cot Ix<5.

1

. . T _ _ _ n
Thus, (2) gives tanlx:E—cotlx. So, tan x+c0t1x:E, xeR.

Similarly, (iii) can be proved.
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Property- VI
(i) sin” x+sin”'y = sin 1(x\/l 12+ pl—x ), where either x” +y” <1 or xy<0.

(ii) sin”' x—sin”' y = sin”' x\/l y? y\/l X ) where either x* +y” <1 or xy>0.
(iii) cos*1x+cos*1y:c0s1[xy V1=x? l—yz} if x+y>0.

(iv) cos™' x—cos™' y =cos” 1[xy l—yz} if x<y.

;_
%

(v) tan"' x+tan"' y =tan" (x_'_yj if xy<l1.
(vi) tan"' x—tan”' y =tan" [ j

Proof
(i) Let A=sin"'x. Then, x=sind ; Ae {—

|2

x| <1 and cos 4 is positive

Now, cos A =++1—sin> 4 =1-x* and cosB=+\/l—sinzB:\/l—
Thus, sin(A+ B) =sin Acos B+ cos Asin B

Let B=sin"'y. Then, y=sinB ; Be y| <1 and cos Bis positive

N|<\~‘ NN
SN

= xyl1-y* + W1-x*, where |x|<1; [)| <1 and hence, x* +y* <1

Therefore, A+ B=sin"' (x\/l -y’ + y\/l —-x’ )

Thus, sin”' x+sin”' y = sin™' (x\/l—y2 +y\/1—x2 ), where either x” +y” <1 or xy<0.

Similarly, other results are proved.

Property-VII 1— 52
(i) 2tan”' x =tan™' <1 (ii) 2tan”' x =cos™ , x>0
—-x 1+ x?
(iii) 2tan1x=sin1(1i);2j, A<l

Proof
(1) By taking y=x in Property-VI (v), we get the desired result

2tan”’ x=tan_1( 2x2j,
1—x

(i) Let 0 =2tan"' x. Then, tan% =X.

<1.

1—tan® — 0 2

L . L 1=%
The identity cosf = 2 - xz gives 0 =cos”' xz .
1+tan2 2 I+x I+x
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1_ 2
Hence, 2tan'x=cos” [1 le, x=>0.
+Xx

Similarly, other result is proved.

Property-VIII
(i) sin”! (2xx/1—x2)=25in_1x if [x]<— o

IN
=
IN

5i-

=
|

N
~

1
(i1) sin’1(2x\/1—x2):2c0s’1x if —2§X§1.

Proof
(1) Let x=sinf.

Now, ZxW =2sin6 cosO =sin 20
Thus, 260 =sin™' (Zx\/g) . Hence, sin™ (2xﬁ) =2sin"' x.
(i1)) Let x=cosf.
Now, ZxW =2cos0sinf =sin 20 , which gives
20 =sin™ (Zx\/g) . Hence, sin™! (Zx\/E) =2cos ' x.
Property-I1X
() sin" x=cos ' VI—x* ,if0O<x<l, (ii) sin™ x = —cos' V1—x? ,if ~1 < x < 0.

(iii) sin‘1x=tan‘1{ J,if—1<x<1. (iv) cos" x =sin"'\1-x> | if0<x<1,

X
NI

X 1
V) cos ' x=m—sin"'V1-x7 ,if—-1<x<0. (Vl)tanlx:sinl[ JZCOSl[ J,ifx>0.
V1+x? V1+x?
T

2

Proof
(i) Let sin”'x=6.Then, sin@ = x.Since 0<x<1,weget 0<0<

cosO =+1—-x" or cos'V1-x*=0=sin"x.
Thus, sin 'x=cos 'Vv1—x*,0<x<]1.
(ii) Suppose that —1<x<0 and sin"' x=0 . Then —%SO <0.

So, sinf = x and cos (-0)=+/1-x*>  (since cos® >0)

Thus, cos™' V1-x> =—0 =—sin"' x. Hence, sin”' x =—cos ' V1—x~.

Similarly, other results are proved.

Property-X

(i) 3sin' x=sin"'Bx—4x’), xe {—%, %} . (ii) 3cos ' x=cos ™' (4x’ =3x), xe€ [%, 1} .
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Proof
(i) Let x=sin@. Thus, O =sin"'x.
Now, 3x—4x’ =3sin6—4sin’ 0 =sin30.
Thus, sin”'(3x—4x’)=30 =3sin"' x.
The other result is proved in a similar way.

Remark

%—x, if xe[0,7]

(i) sin'(cosx)=
%—y, if x¢[0,7]and cosx=cosy,ye[0,7]
Ty ifx{_g,g}

(ii) cos™'(sinx)=
T if xe I Z | and sinx=siny, ye Lz
2 P 272 ’ 272

Example 4.16
Prove that % <sin'x+2cos ' x< 377[ )

Solution

. _ . _ _ T _
Sin 1)6'-1—2008 1)C=Sll’1 1)C-i-COS l)C+COS IX:E-FCOS IX

T T T
We know that 0<cos' x<x . Thus, 5+0Scos"1x+zﬁn+5 .

T . _ 3z
Thus, Eﬁsm 1x+2coslxs?-

cos| — (i) tan™ | tan| —
3 4
(iii) sec™ [sec(s?ﬂjj (iv) sin”'[sin10]

Example 4.17

Simplify (i) cos™

Solution

(i) cos™ (COS(BTﬂjj . The range of principal values of cos™' x is [0,7].

131

Since 13Tﬂeé[o,ﬂ],we write 13Tnas —=4Tl:+£, where ge[o, n].

Now, cos 13—” =Cos 47r+z :cosz.
3 3 3

Thus, cos™ COS(B—TC) =cos”' cos(z) . , since Te [0,7].
3 3 3 3
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.. 0 RY4
(i1) tan (tan [TD .

Observe that 3—7T is not in the interval (—%, %J , the principal range of tan™' x.

. 3m T
So, we write — =7 ——.
4 4

Now, tan| — |=tan| 7 —— |=—tan—=tan| —— |and ——¢€| ——, — |.
4 4 4 4 4 2 2
a 3r i s T T T T
Hence, tan™ | tan| — | [=tan | tan| —— | |=——, since —— & |——,—|.
4 4 4 4
(iii) sec™ (sec(%}j.

Note that S?W is not in [0, ﬂ]\{%}, the principal range of sec™ x.

We write 5—ﬂ=27r—£. Now, sec S —sec| 272 |=sec| £ | and Ze[O, 7]\ zt
3 3 3 3 3 3 2

Hence, sec”! sec(s—ﬂ] =sec’ sec(zj :E_
3 3 3

(iv) sin™ [sin 10]

We know that sin™ (sin6) =6 if 6 e {—%, %} Considering the approximation gz % ,
we conclude that 10 ¢ —z, z ,but (10-37) e —Z, 2 .
22 22
Now, sinl0 = sin(37r +(10—37T)) =sin(z + (10-37) = —sin(10—-37) = sin(37 —10).
Hence, sin"'[sin10]=sin"' | sin(37 —10) | =37 —10, since (37 —10) € —E, x .
[sin10]=sin” [sin (37 -10)] ero0e| -2 2]
Example 4.18
Find the value of (i) sin| = —sin"' . (ii) cos Leost( L
3 2 2 8
2
(iii) tan L gint 2a2 +Leost| 4 a2 .
2 l+a 2 l+a
Solution
w T . 1 e T (T
(1) sin| ——sin" | —— | |=sin| ——| —— | |=sin| — |=1.
3 2 | 3 6 2
y . 1 (1] (1 1
(ii) Consider cos Seos | 2| Let cos 3 =0 .Then, cosf =3 and 0 €0, 7].
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0
Now, cosf = l implies 2cos’ Q —1= l . Thus, cos Q = E , since COS(—] is positive.
2 8 2) 4 2

Thus, cos lcos’1 1 =cos o =§.

2 8 2 4
2
(i) tan| L sin| 29 |+ Leos | 122
2 1+a 2 1+a

Let a=tan0.

Now,

1. . 2a 1 (1-4° 1 . ,( 2tan® 1 _,(1-tan”6
tan| —sin > |+ cos 5 =tan| —sin —— |[+ZC0S | ————
2 l+a 2 1+a 2 1+tan- 0 2 1+tan~ 0

=tan[%sin"l(sin20)+%cos_l(cos29)}=tan[29]= 2tan® _ 2a

1-tan’0 1-a°’

Example 4.19

1

Prove that tan(sin” for |x|<1.

X)= al
N B

Solution
Let sin'x=6. Then, x=sinf and -1<x<1
. i in 6
Now, tan(sin' x)=tan = sinf _ 2 = L, x| <1
cos0 \/l—sin20 1—x?
Example 4.20
. (3 (5
Evaluate sin|sin | = |+sec | —
5 4
Solution
45 5 4
Let sec Z =0.Then, secO =— and hence, cosf = g )

5

Thus, sec™ > = gin™! 3 and sin™' = +sec™! EAE 2 sin™! 3 .
4 5 5 4 5

We know that sin”’ (2x\/1 — X ) —2sin'x, if |x|< % .

2
Since 3 < € , we have 2 sin™! (Ej =sin”' | 2x 3 1—(§j =sin! (%j
5 2 5 5 5 25

4
. ; 4V 3 . (3
Also, sin@=+1-cos°0 = [1-| — :g , which gives 6 =sin 5
3

Hence, sin|sin™ 3 +sec”! 3= sin| sin™' 24 =ﬁ, since %e[—l, 1].
5 4 25 25 25
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Example 4.21

1 1
Prove that (i) tan™' 5 +tan” 3 = % (i) 2tan™ %+ tan”' % =tan"' %
Solution
. _ _ X+
(i) We know that tan™' x+tan"' y=tan' 2 | xp<l.
—Xy
I 1
— + —

1
Thus, tan™ B +tan”'

+ J—
Hence, 2tan”' 1 +tan”! 1_ tan ' 4 +tan” 1_ tan”'| —3— 7 |—tan"! 31 .
2 7 3 7 {— ) )

Example 4.22

If cos™ x+cos™ y+cos”' z=m and 0<x,y,z<1, show that
X+ 2+ 2xz =1

Solution
Let cos' x=a andcos”' y=. Then, x=cosa and y=cosp.
cos ' x+cos ' y+cos'z=m gives a+B=m —cos ' z. .. (1)

Now, cos(a+[3)=cosa cos B—sina sin B =xp—+1-x>J1-y".
From (1), we get cos(n —cos”' z) =xy—V1-x"1-y?
—cos(cosflz):xy—\/l—xzsll—y2 .

So, —z=xy—~1-x"y1-y* , which gives —xy —z=—1-x>/1-y" .

Squaring on both sides and simplifying, we get x° + > +2z° +2xyz =1. n

Example 4.23

Ifa,a, a, ...a, isan arithmetic progression with common difference d,

prove that tan| tan™' d +tan™' d +..+tan”' d - 44
1+aa, 1+a,a, I+aa,, l+aa,

Solution j

d
Now, tan™'
I+aa,

-1 a2 - al —1 —1
= tan | —— |=tan a,—tan q,.
1+a,a,
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. _ d | ay—a _ -
Similarly, tan™ =tan'| =—2 |=tan'q, —tan"'q,.
Yy 3 2
1+a,a, 1+a,a,

Continuing inductively, we get

_ d 4 a —a _ _

tan'| ——— |=tan'| —=—2L |=tan'a —tanlaf.

l+aa l+a .a ! o
n—1"n

n"n—-1

Adding vertically, we get

d 1 d -1 d _ -1 -1
+ tan +...+tan” | ———— |= tan" a, —tan" q,.
1+aa, 1+a,a, I+aa,

-1 d -1 d -1 d _ -1 -1
tan| tan + tan +..+tan” | —— | |=tan[tan” a, —tan" q,]
1+a,a, 1+a,a, l+aa

_ -1 an B al _ an B al
= tan| tan = .
I+aa, l+aa,
[ |

—_

tan

Example 4.24 Solve tan™ (—XJ ~Lan " x for x> 0.
l+x) 2

Solution

- . - _ | R
tan”™' I=x :ltan’lx gives tan”'l—tan"' x=—tan' x.
I+x 2

Therefore, % = %tan1 x, which in turn reduces to tan' x = %
@ T 1 @
Thus, x=tan—=—.
NE)
[ |

Example 4.25 Solve sin™ x > cos™ x
Solution

Given that sin™' x>cos™' x. Note that —1<x <1.

Adding both sides by sin'x, we get

sin™ x+sin~ x> cos™ x+sin” x, which reduces to 2sin” x > .

. . ) ) T . T 1
As sine function increases in the interval | ——, — |, we have x >sin— or x> —.
272 4 2
Thus, the solution set is the interval [L, 1} .
V2
Example 4.26 n
) 1—x*
Show that cot(sin™' x) = al ,—1<x<land x=0
X
Solution
-1 . _TC TC
Let sin'x=0.Then, x=sin0 and x #0, we get O € [T’OJU(O’E}
Hence, cos®=0 and cos 6= \/l—sinze —J1-x%.
2
Thus, cot(sin™' x)=cot0 = ,|x|<1and x=0 =
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Example 4.27:  Solve tan'2x+tan ' 3x = 7 if 6x° <1.
Solution
Now, tan”' 2x+tan ' 3x = tan”’ (%j, since 6x° <1.
—6x
o S5x T e Sx T
So, tan > | = —, which implies > =tan—=1.
1-6x 4 1-6x 4
Thus, 1-6x* = 5x, which gives 6x”> +5x—1=0
Hence, X = é,—l. But x =—1 does not satisfy ¢x?> <1.

Observe that x =-1 makes the left side of the equation negative whereas the right side is a

positive number. Thus, x =—1 is not a solution. Hence, x = 5 is the only solution of the equation.

[ |

Example 4.28

Solve tan"l(X_l]+tan"l(x+lj=E .

x—2 x+2 4
Solution
x—1 x+1
Now, tan” x-1 +tan” X+ _ tan~| —X=2 x+2 |_T
x—2 x+2 1_x—l x+1 4
x—2\x+2
x—1 x+1
_l’_
Thus, X-2 x+2 _ 1, which on simplification gives 2x>—4=-3
3 x=1( x+1
x—2(x+2j
Thus X' = 1 gives x—+L
2 —_ \/E .
[ |

Example 4.29

Solve cos| sin™ ( al J = sin {cot’1 (Ej}

V1+x? 4

Solution > 4

We know that sin™ (

Thus, cos sinl{ al J = . (1)
V1+x? 1+x°

(3 3
Let cot I(Z) =0.Then cotO =Z and so O is acute.

[a—
+
=
S
N——
I
(@)
]
w»n
— /%\
[u——
+ —_
=
S
N——
>
w

From the diagram, we get

. 4
Hence, sin{cot‘1 (gj} =sin@ =— - (2)
4 5
. . . . 1 4 S > 5
Using (1) and (2) in the given equation, we get = = 3’ which gives V1+x" = 7
I+x
3
Thus, x=%+-—.
4 [ |
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10.

Choose the correct or the most suitable answer from the given four alternatives.

1.

2.

EXERCISE 4.5
. Find the value, if it exists. If not, give the reason for non-existence.
. - -1 .. -1 . 577: cee -1 .
(i) sin™'(cosm) (i) tan (sm(—?n (iii) sin”'[sin5].

. Find the value of the expression in terms of x, with the help of a reference triangle.

(i) sin(cos™ (1-x)) (iii) cos(tan™'(3x—1)) (i) tan(sin_l (er%jj

. Find the value of

(i) sin”'| cos| sin”' ﬁ (ii) cot sin’1§+sin’li (iii) tan sin’1§+c0t’lé .
2 5 5 5 2

. Prove that
12 7 1 3 12 16
i) tan”' = +tan"' — =tan ' ii)sin”' = —cos™” — =sin"' —.
) 11 24 2 (i1) 5 13 65
+y+z—
. Prove that tan”' x+tan™' y+tan™' z = tan™’ [M}
l—xy—yz—2zx
.Iftan"'x+tan”' y+tan'z=x , showthat x+y+z=2xyz.
3
. Prove that tan™' x+tan™' 5 =tan' 3x x2 , | xl<—.
I-x 1-3x J3
. Simplify: tan"' X —tan' 22
Y X+y
. Solve:
. - 1 P | 12 T .o -1 ,ll_az 711_b2
(1) sin” —+sin" —=— (if)2tan™ x =cos” —— —Cos ~,a>0, b>0.
X x 2 l+a 1+b

(iii) 2tan™ (cosx)=tan"' (2cosecx) (iv)cot™ x—cot™ (x+2)= %, x>0.

Find the number of solutions of the equation tan™ (x—1)+tan™ x+tan"' (x+1)=tan"' (3x).

@ EXERCISE 4.6 |

& -
The value of sin™' (cosx), 0<x<z is RBPG38
(1) 7 —x Q) x-Z 3) L« 4) x-n
2 2
- -1 - 1 277: -1 —1 .
If sin™ x+sin y:?; then cos™ x+cos  y is equal to
21 s s
1) =— 2) — 3) — 4) w
(1) 3 (2) 3 3) p 4)
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. 3 o212 45 413,
3. sin” ——cos” —+sec ——cosec — is equal to
5 13 3 12
(1) 27 ) 3)0 4) tanI%
4. If sin”' x =2sin"' o has a solution, then
1 1 1 1
D) la|<— 2) la|z2— 3) la|<—= 4) |la|>—
ol < - @ lolz ®) Jol <5 @ laf>
5. sin”'(cos x) = %— x is valid for
(1) ~r<x<0 @ 0<x<r @ -Z<x<l @ -Tox<T
2 2 4 4
6 If Sin—l + : -1 -1 3_77’- th 1 f 2017 2018 2019 9 :
. x+sin” y+sin~ z = > evalue of x™ ' +y~ "4z T is
(1o 2)1 (3) 2 “4 3
7. If cot™ x=2?ﬂ for some x € R, the value of tan™' x is
T 7 T s
1) —— 2) — 3) — 4) ——
(1) 10 () s 3) 10 4 <
8. The domain of the function defined by f(x)=sin"'vx—1 is
(D [1, 2] (2) [—1, 1] 3) [O, 1] 4) [—1, O]
9 If xz%, the value of cos(cos_1 x+2sin™ x) is
24 24 1 1
1) - |— 2) [|— 3) = 4) ——
(1) ,/25 (),/25 3) 4) s
a1 S4(2).
10. tan™ | — |+tan" | — | is equal to
4 9
1 3 1 3 1 3 1
1) —cos'| = 2) —sin”'| = 3) —tan'| = 4) tan'| =
W32 @[3 ® (3 @ [l
11. If the function  f(x)=sin"' (x2 —3), then x belongs to
(D) [-1,1] @) |V2,2]
3) [-2 -V2]u[V2. 2] @ [-2,-v2]
12. If cot™' 2 and cot™' 3 are two angles of a triangle, then the third angle is
nE o 2T 3 T n =
(1) 5 @ 3) ¢ 4 3
13. sin™

tan %] —sin”" [\/E ] = % . Then x is a root of the equation
X

() x> —x—6=0 (2) x> —x—12=0 B) X¥*+x—12=0 (4) xX*+x—6=0
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14. sin™ (2 cos’ x — 1) +cos”' (1 —2sin’ x) =
T T T T
1) — 2) — 3) — 4) —
(1) 5 () 3 3) 1 4 p
15. If cot ™' (\/sinOt)—i—tan*1 (\/sina):u , then cos2u is equal to
(1) tan’ & 2)0 3) -1 (4) tan2o
16. If |x| <1, then 2tan™" x—sin™' —— is equal to
I+x
(1) tan"' x (2) sin”' x 3)0 4) =
17. The equation tan™' x—cot™' x =tan™' (Lj has
3
(1) no solution (2) unique solution
(3) two solutions (4) infinite number of solutions
. (1 T )
18. If sin™ x+cot 5 :E,then x 1is equal to
1 1 2 V3
) = 2) —-= 3) = “4) —
® (1) 5 NG 7 >
. X 45 .
19. If sin™ =+ cosec Z = E, then the value of x is
(1)4 2)5 (3) 2 4 3
20. sin(tan ' x), | x|<1 is equal to
(1) — Q) ——— ¢ —— )
J1—x? 1—x* VI+x° VI+x°
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SUMMARY

Inverse Trigonometric Functions

53]

[53)

Eom

et

. . Inverse Inverse Inverse
Inverse sine |Inverse cosine Inverse cot
. . tangent cosecant secant .
function function . . . function
function function function
Domain Domain Domain Domain Domain Domain
[-11] [-L1] R (—o0,—1]U[1,0) (—oo,-1]U[Lo) | R
Range Range Range Range Range Range
[0, 7] (0, 7)

not a periodic

not a periodic

not a periodic

not a periodic

not a periodic

not a periodic

function function function function function function
odd function | neither even odd function |odd function |neither even neither even
nor odd nor odd nor odd
function function function
strictly strictly strictly strictly strictly strictly
increasing decreasing increasing decreasing decreasing decreasing
function function function function with | function with | function
respect to its | respect to its
domain. domain.
one to one one to one one to one one to one one to one one to one
function function function function function function

Properties of Inverse Trigonometric Functions

Property-I

(1) sin"!(sin 0) =0 , ifee[

(ifi) tan”' (tan0)= 6, if Oe(

T E]
272

T E)
272

(v) sec!(sec 0)= 6, if 0<[0, 7] \{g}

Property-I11

(i) sin(sin”x)=x, if xe[-1,1]

(iii) tan(tan'x)=x, if xeR

) sec(sec‘lx) x, if xeR\(-11)

Property-III (Reciprocal inverse identities)

(1) sinl(lj= cosecx, if xeR\(-1,1). (ii) cosl(lJ= secx, if xeR\(-1,1)
x x

(iii) tan™ G) _ {

‘ ‘ Chapter 4 Inverse Trigonometry.indd 169

cot™' x

if x>0

—m+cot ' x if x<O.

(vi)

(i)
(iv)
(vi)

(ii) cos™ (cos 0)= 6, if 0€[0, 7]

169

cot! (cot 0)= 0,

(iv) cosec™'(cosec 0)=6, if 6 e|:

cos(cos‘lx)zx, if xe[-1,1]

cot(cot‘1 x) =x, ifxeR

—E T o
272

if 0<(0, m)

cosec(cosec’lx)zx, if xeR\(-L1)
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Property-IV(Reflection identities)

(1) sin”'(-x)=—sin"'x,if xe[-1,1].

(ii) tan”'(-x)=-tan"'x,ifxeR.
(iii) cosec™ (=x)=— cosec”'x,if x| 21 or xeR\ (-1, 1).
(iv) cos™'(-x)=m—cos ' x,ifxe[-1,1].

(v) sec”'(—x)=m—sec” x,if |x|>1 or xeR\(-11).
(vi) cot'(—x)=m—cot'x,if xeR.

Property-V ( Cofunction inverse identities )

1) sin'1x+cos'1x=g, xe[-1,1]. (ii) tan'lx+cot'1x=g, xeR.
(1i1) cosec’1x+sec’1x=§, xeR\(-1,1) or |x>1.

Property-VI

(i) sin'x+sin’y = sin™’ (x\/l—yz N ), where either x* +y° <1 or xy<0.

(ii)) sin"'x-sin"'y = sin™’ (x\/l—yz N ), where either x* + y* <1 or xy>0.

(iii) cos' x+cos™ y=cos™ xy—\ll—xzwll—yz} if x+y>0.

(iv) cos'x—cos" y=cos™ xy+\/1—x2\/1—y2} if x” y.

V) tan x+tan  y=tan~ , if xy<l.
1 1y, | Xty f xy<l
1—xy
vi) tan'x—tan'y=tan'| —= | if xy>-1.
1 1 y | xX-y foxy>-—1
I+xy
Property-VII
: 2 . -x
(1) 2tan1x:tan1(1_);2), x| <1 (ii) 2tan1x:cos1[1+;], x>0
2
(ili) 2tan”' x=sin™"' (1+);2 ), x| <1

Property-VIII

. . 1 1 1
s | 2 o =il
1) sin (2x I-x )=251n x,if x| <— or ——<x<—.
W “ HEr T ET
i) sin™ (2xx/1—x2)=2cos_1x, if L <x<l.
V2
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Property-I1X
(i) sin"'x=cos'V1-x*,if 0<x <1, (ii) sin"'x=-cos'V1-x*,if -1<x<0.

(ii) sinlx:tanl[ ],if—l<x<1. (iv) cos'x=sin"'\1-x*,if 0<x <1,

X
NIE.

(v) cos'x=m—sin"VI-x",if —1<x<0. (vi) tanlx:sinl(

X

7oty

,if x>0.

Property-X
(i) 3sin™ x = sin" Bx—4x’), xe [—% ﬂ . (ii) 3cos™ x =cos™ (4x° —3%), xe B 1} .

B
(=" ICT CORNER

https://ggbm.at/vchq92pg or Scan the QR Code

Open the Browser, type the URL Link given below (or) Scan the
QR code. GeoGebra work book named "12th Standard Mathematics"
® will open. In the left side of the work book there are many chapters ®

related to your text book. Click on the chapter named "Inverse

Trigonometric Functions”. You can see several work sheets related to
the chapter. Select the work sheet "Graph of Inverse Trigonometric

Functions"
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Two Dimensional Analytical Geometry-l

"Divide each difficulty into as many parts as is feasible and necessary to resolve it"
René Descartes

ABBASA

5.1 Introduction

Analytical Geometry of two dimension is used to describe geometric objects such
as point, line, circle, parabola, ellipse, and hyperbola using Cartesian coordinate
system.Two thousand years ago (= 2— 1 BC (BCE)), the ancient Greeks studied
conic curves, because studying them elicited ideas that were exciting, challenging,

RenéDescartes and interesting. They could not have imagined the applications of these curves in
1596 —1650  the Jater centuries.

Solving problems by the method of Analytical Geometry was systematically developed in the
first half of the 17" century majorly, by Descartes and also by other great mathematicians like Fermat,
Kepler, Newton, Euler, Leibniz, I’Hopital, Clairaut, Cramer, and the Jacobis.

Analytic Geometry grew out ofneed for establishing algebraic techniques for solving geometrical
problems and the development in this area has conquered industry, medicine, and scientific research.

The theory of Planetary motions developed by Johannes Kepler, the German mathematician cum
physicist stating that all the planets in the solar system including the earth are moving in elliptical
orbits with Sun at one of a foci, governed by inverse square law paved way to established work in
Euclidean geometry. Euler applied the co-ordinate method in a systematic study of space curves and
surfaces, which was further developed by Albert Einstein in his theory of relativity.

Applications in various fields encompassing gears, vents in dams, wheels and circular
geometry leading to trigonometry as application based on properties of circles; arches, dish,
solar cookers, head-lights, suspension bridges, and search lights as application based on
properties of parabola; arches, Lithotripsy in the field of Medicine, whispering galleries,
Ne-de-yag lasers and gears as application based on properties of ellipse; and telescopes, cooling
towers, spotting locations of ships or aircrafts as application based on properties of hyperbola, to
name a few.

Fig. 5.1 Fig. 5.2 Fig. 5.3
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Fig. 5.4 Fig. 5.5

A driver took the job of delivering a truck of books ordered on line.
The truck is of 3m wide and 2.7m high, while driving he noticed a sign

at the semielliptical entrance of a tunnel; Caution! Tunnel is of 3m high
at the centre peak. Then he saw another sign; Caution! Tunnel is of 12m
wide. Will his truck pass through the opening of tunnel’s archway? We

will be able to answer this question at the end of this chapter.

@ Learning Objectives

Upon completion of this chapter, students will be able to

write the equations of circle, parabola, ellipse, hyperbola in standard form,
find the centre, vertices, foci etc. from the equation of different conics,
derive the equations of tangent and normal to different conics,

classify the conics and their degenerate forms,

form equations of conics in parametric form, and their applications. ®
apply conics in various real life situations.

5.2 Circle

The word circle is of Greek origin and reference to circles is found as early as 1700 BC (BCE). In Nature
circles would have been observed, such as the Moon, Sun, and ripples in water. The circle is the basis
for the wheel, which, with related inventions such as gears, makes much of modern machinery possible.
In mathematics, the study of the circle has helped to inspire the development of geometry, astronomy and
calculus. In Bohr-Sommerfeld theory of the atom, electron orbit is modelled as circle.

Definition 5.1
A circle is the locus of a point in a plane which moves such that its distance from a fixed point
in the plane is always a constant.

The fixed point is called the centre and the constant distance is called radius of the circle. |

5.2.1 Equation of a circle in standard form
(i) Equation of circle with centre (0, 0) and radius r

Let the centre be C(0,0) and radius be » and P(x,y) be the moving point.
o)

Note that the point P having coordinates (x, y) is represented as P(x, y).

Then, CP = r andso CP*=r" ~ J e
Therfore (x—0)>+(y-0)* = * P(x, y)

2

Thatis x*+)° = r

This is the equation of the circle with centre (0,0) and radius 7. Fig.5.7

173 Two Dimensional Analytical Geometry - 11
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(ii) Equation of circle with centre (%, k) and radius r y
Let the centre be C(h,k) and r be the radius and P(x,y) be the moving /‘\\
oint. = 13
P Then, CP=r and so CP* =r>. LB
That is, (x—h)’+(y—k)* =r>.This is the equation of the circle in”®
Standard form, which is also known as centre-radius form.

Expanding the equation, we get Fig.5.8
X4y =2hx-2ky+h +k*—r*=0.
Taking 2g = —-2h,2 f = —2k,c=h" + k> —r”, the equation takes the form
x*+y* +2gx+2fy+c=0, called the general form of a circle.
The equation x° + y* +2gx+2 fy +c =0 is a second degree equation in x and y possessing the
following characteristics:
(1) It is a second degree equation in x and y,
(i) coefficient of x> = coefficient of y* =0,
(ii1) coefficient of xy =0.
Conversely, we prove that an equation possessing these three characteristics, always represents
a circle. Let
ax’ +ay’ +2gx+2fy+c=0 .. (D)
be a second degree equation in x and y having characteristics (1), (i1) and (ii1), a = 0. Dividing
(1) bya, gives
2¢" 2f" ¢

X+ Y+ x+ -y +—=0. .. (2)
a a a
. g’_ f’_ C’_ . 2, .2 _
Taking == g,~— = fand — =c, equation (2) becomes x™ + y" +2gx+2 fy+c=0.
a a a

Adding and subtracting g”and f?,we get x° +2gx+ g’ + V> +2f+ f1—g'— [P +c=0
= @+g) +(y+f) =g+ ~c
2
= (r=(-g) + (=1 =(J&' + /7 =)
This is in the standard form of a circle with centre C (—g,— f)and radius » = /g’ + > —c . Hence
-8 -/

equation (1) represents a circle with centre (—g,—f) = (—,—j and radius
a a

:\/g2+f2—c=é\/g'2+f'2—c’a.

Note

The equation of the circle x* + 1> +2gx + 2 i + ¢ = 0 with centre (~g,~f) and radiusy &" + /~ — ¢ represents.
(i) arealcircleifg’+ f*>—c>0;
(i) apointcircleif g*+ /> —c=0;

(iii) an imaginary circle if g* + f* —c <0 with no locus.
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Example 5.1
Find the general equation of a circle with centre (—3,—4) and radius 3 units.

Solution
Equation of the circle in standard form is (x - h)2 +(y— k)2 =7’

= (=) (-4 =¥
= (x+3)2+(y+4)2 =3

= X’ +)°+6x+8y+16 =0.

Theorem 5.1
The circle passing through the points of intersection (real or imaginary) of the line Ix +my +n =0
and the circle x° + y* +2gx+2fy+c =0 is the circle of the form
X+ +2gx+2fy+c+A(lx+my+n)=0, LeR".

Proof
Letthecirclebe S : x*+3)° +2gx+2fy+c =0, .. (D)
and the linebe L : Ix+my+n=20. o)
Consider S+AL=0 . Thatis x* 4+’ +2gx+2fy+c+A(lx+my+n)=0 .. (3)

Grouping the terms of x, y and constants, we get

x>+ +x(2g + )\l) +y(2f + )\m) +c+ An =0 which is a second degree equation in x and
y with coefficients of x*and ) equal and there is no xy term.
If (a, B) 1s a point of intersection of S and L satisfying equation (1) and (2), then it satisfies equation (3).

Hence S+ AL = 0 represents the required circle. [
Example 5.2
Find the equation of the circle described on the chord 3x+ y+5=0 of the circle x>+ y* =16 as
diameter.
Solution

Equation of the circle passing through the points of intersection of the chord and circle by
Theorem 5.11is x* +)° —16+A(3x+y+5)=0.

The chord 3x+ y+5=0 is a diameter of this circle if the centre (%,%j lies on the chord.

So, we have 3 ﬁj—&+5 =0,
2 2

kA +5=0,
2 2
= —5A+5 =0,
= A =1.
Therefore, the equation of the required circle is x* + 3> +3x+y—11=0. n

Example 5.3
Determine whether x+y—1=0 is the equation of a diameter of the circle

x* + > —6x+4y+c = 0for all possible values of c.

Solution
Centre of the circle is (3,—2) which lieson x+y—1=0. So the line x+ y—1=0 passes through

the centre and therefore the line x + y—1=0 is a diameter of the circle for all possible values of c.®
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Theorem 5.2
The equation of a circle with(x,,y,) and (x,,,)as extremities of one of the diameters of the

circle is (x—x)(x—x,)+(y—y)(¥y-»,)=0.

Proof
Let A(x,,y,) and B(x,,y,)be the two extremities of the diameter 4B , and P(x,y) be any point
P 2
on the circle. Then LAPB :% (angle in a semi-circle). )
(x ) (x5,¥,)
Therefore, the product of slopes of 4P and PBis equal to —1. 4 B
That is, (y — yl) (y — yz) = —1 yielding the equation of the required circleask/
x—x) ()c—x2 Fig.5.9
(x=2)(x=x) +(y=3)(y=»,)=0. _
Example 5.4

Find the general equation of the circle whose diameter is the line segment joining the points
(—4,—2)and (L1).
Solution
Equation of the circle with end points of the diameter as(x,,y,)and (x,,y,)given in
theorem 5.2 is
(x=x)(x=x,)+(y=»)(y-»,) =0
® = (x+4)(x=1)+(y+2)(y-1) = 0 ®

= x*+)" +3x+y—-6=0 which is the required equation of the circle. n

(Theorem 5.3 b
The position of a point P(x,, y,) with respect to a given circle x* + y* +2gx+2 fy + ¢ = 0in the

plane containing the circle is outside or on or inside the circle according as

>0 or,
x'+y+2gx +2f/,+cis {=0 or,
N <0. )
Proof
o/ %,
Equation of the circle is x* + y* +2gx+2 fyy + ¢ =0 with centre C )
(-g,—f) and radius » =/g’ + f* —c.
Let P(x,,y,)be a point in the plane. Join CPand let it meet the
circle at O .Then the point P is outside, on or within the circle according
as Fig.5.10
>|CQJ o,
|CP| is {=|CQ| or,
<[ CQI.
XII - Mathematics 176
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>r or,
= CP’is {=r> or {CO=r},
<r’.

>g’+f*—c o,
= (q+e)+n+/)isi=g +/ —c or
<g’'+f-c

>0 or,
= x +y’ +2gx +2f, +cis =0 o,

<0. ]

Example 5.5
Examine the position of the point (2,3) with respect to the circle x* +y* —6x—8y+12=0.

Solution
Taking (x,, y)) as (2, 3), we get

X+ +2gx +2f) +c=2"+3"—6x2-8x3+12,
=4+9-12-24+12 =-11<0.

Therefore, the point(2,3) lies inside the circle, by theorem 5.3. m

Example 5.6

The line 3x+4y—12 =0meets the coordinate axes at 4 and B . Find the equation of the circle

drawn on AB as diameter.

Solution

Writing the line 3x+4y =12, in intercept form yields §+ % =1. Hence the points 4 and B are

(4,0) and (0,3).
Equation of the circle in diameter form is
(x=x)(x=x)+(y=2)(y-2,)
(x=4)(x=0)+(y-0)(y-3)

x*+y’—4x-3y

0
0
0. m
Example 5.7
Aline 3x+4y+10=0cuts a chord of length 6 units on a circle with centre of the circle (2,1). Find
the equation of the circle in general form.
Solution
C(2,1) 1s the centre and 3x+4y+10=0 cuts a chord AB on the circle. Let M be the midpoint
of AB . Then we have
AM = BM =3 .Now BMC s aright triangle.

So, we have CM = |3(2)+4(1)+10| =4 M
’ V3% + 47

B
By Pythogoras theorem BC* = BM* + MC*> =3" +4° =25. Fig.5.11

A
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BC = 5= radius.
So, the equation of the required circle is (x—2)* +(y—1) = 5°
x4y —4x-2y-20 =0.
Example 5.8 "
A circle of radius 3 units touches both the axes. Find the equations of

¥y

all possible circles formed in the general form. g “
Solution

As the circle touches both the axes, the distance of the centre from JL x
both the axes is 3 units, centre can be (+3,£3) and hence there are four 1r
circles with radius 3, and the required equations of the four circles are
X+’ £6x£6y+9=0.
Example 5.9 Fig.5.12 [

Find the centre and radius of the circle3x’ +(a+1)y* +6x—9y+a+4=0.
Solution
Coefficient of x* = Coefficient of y” (characteristic (ii) for a second degree equation to represent
a circle).
Thatis, 3=a+1 and a=2.
Therefore, the equation of the circle is
3x° +3y* +6x-9y+6 =0

® X’ +y*+2x-3y+2 =0 ®

. 3 ) / 5
So, centre is (—1, Ej and radius r = 1+%—2 = g

Example 5.10
Find the equation of the circle passing through the points(1,1), (2,—1), and(3,2).

Solution n
Let the general equation of the circle be

X +y +2gx+2f+c =0 . .. (1)

It passes through points (1,1),(2,—1) and(3,2).

Therefore, 2g+2f+c = -2, .2
4g-2f+c = -5, ...(3)
6g+4f+c = —13. .. @

(2) — (3) gives —2g+4f =3. .. (5)

(4) - (3) gives 2g+6f = 8. .. (6)

(5) + (6) gives f = —%
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Substituting f = —% in(6), g = —%.

Substituting f = —% and g = —% in(2),c=4.
Therefore, the required equation of the circle is
5 1
X+ 42 == [x+2[—=|y+4 =0
y > > y
= X +)" -5x—y+4 =0. [ |

Note
Three points on a circle determine the equation to the circle uniquely. Conversely three equidistant

points from a centre point forms a circle.

5.2.2 Equations of tangent and normal at a point P on a given circle

Tangent of a circle is a line which touches the circle at only one point and normal is a line
perpendicular to the tangent and passing through the point of contact.

Let P(x,,y,) and Q(x,,y,) be two points on the circle x* +y* +2gx+2fy+c=0.

Therefore,
X'+ +2gx, +2fy +c =0 .. (1)
and x,” +y," +2g%, +2fy, +¢ =0 v (2) 0(x2,y2)
0
(2)—(1) gives Qn g
2_ 2 2 2 _ : / o
X, =Xy, =y 4286 —x)+2f(y,—»)=0 L
=)
(xz_xl)(xz+x1+2g)+(yz_y1)(y2+y1+2f)=0 )
Fig.5.13
X, +x+2¢g _ _(yz — )
Yo+ +2f (x,—x,)
Therefore, slope of PQ = _(x1+x—2+1g).
D+ +2f)
When Q — P, the chord PO becomes tangent at P
Slope of tangent is — (2xq+2¢) __(n+g) .
Cyn+2f) W+ f)
Hence, the equation of tangentis y—y, = —M(x —x,). Simplifying,
W+
W =0 = -t g —gx = 0
xx, oy rex+ f—(x+y g+ f,) =0 (1)
Since (x,,,)is a point on the circle, we have x,* + y,” +2gx, + 2 fy, +¢c =0
Therefore, —(x,” + y,” + gx, + fiy) = gx, + fy, +c. .(2)
Hence, substituting (2) in (1), we get the equation of tangent at (x,, y,) as
X+ +g(x+x)+ f(y+y)+e=0.
179 Two Dimensional Analytical Geometry - 11
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Hence, the equation of normal is ( y— yl) ((ziig)) (x—xl)
= (r=y)(x+g) =(n+f)(x-x)
= % (y-n)te(y-n) =n(x-x)+f(x-x)
= yxl—xy,+g(y—y1) (x xl) 0.

Remark
(1) The equation of tangent at (x;, y, ) to the circle x*)?>=a® is xx, + yy, =a’.

(2) The equation of normal at(x,, y,) to the circle x*+)?=a’is xy, —yx, =0.

(3) The normal passes through the centre of the circle.

5.2.3 Condition for the line y=mx+c to be a tangent to the circle x’+y’ =4’

and finding the point of contact
Let the line y=mx+c touch the circle x°+y” =a’. The centre and radius of the circle

x> +y° =a’are(0,0) and a respectively.
(i) Condition for a line to be tangent
Then the perpendicular distance of the line y —mx—c =0 from (0,0) is
0-m.0— c| e
\/ler2 ‘_ \/1+m2 -
c|

This must be equal to radius .Therefore N —aorc’=a’(l+m’).
1+m

Thus the condition for the line y =mx+c to be a tangent to the circle x*+y*> =4’ is
=a’'1+m’)

(ii) Point of contact

Let (x,,y,) be the the point of contact of y =mx+c with the P(x,, %)
circle x* +y> =a’, y:m“r*c
Then y, = mx, +c. (1)
Equation of tangent at (x,,y,) is xx, +yy, = a’.
W, = —xx, +a - (2)
Equations (1) and (2) represent the same line and hence the Fig.5.14
coefficients are proportional.
A — —a—z
| c

m
4 _am,c—:ta\/H—

Then the points of contact is either [ j
\/ 1+ m? \/ 1+m?

(\/1+m \/l+m }
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Note
The equation of tangent at P to a circle is y = mx+a1+m’ .

Theorem 5.4 |

From any point outside the circle x* + )»* = a° two tangents can be drawn.

Proof
Let P(x,,y,) be a point outside the circle. The equation of the tangent is T

1
y=mx+avl+m’ . It passes through (x,,y,) . Therefore
y, = mx, ta\l+m’ ‘O(Jg’y)
7

y,—mx, = aN1+m’® . Squaring both sides, we get

2
Fig.5.15
v, —mx))* = a’(1+m’) &

yo+m'x =2mxy,—a —a'm’ =0
m*(x” —a’)=2mxy, +(y’ —a’) = 0.
This quadratic equation in m gives two values for m .
These values give two tangents to the circle x* +y* =a’. u

Note
(1) If (x,,y,) is a point outside the circle, then both the tangents are real.

(2) If (x,,y,) 1s a point inside the circle, then both the tangents are imaginary.
(3) If (x,,y,) i1s a point on the circle, then both the tangents coincide.
Example 5.11
Find the equations of the tangent and normal to the circle x*+y* =25 at P(-3,4).

Solution
Equation of tangent to the circle at P(x,,y,)is xx, +yy, =a’.

That is, x(=3)+y(4) =25
—3x+4y =25
Equation of normal is xy,—yx, =0
That is, 4x+3y=0. [ |

Example 5.12
If y =4x+cis a tangent to the circle x> +y* =9, find c.
Solution
The condition for the line y = mx + ¢ to be a tangent to the circle x* + 1> =a” is ¢* =a’*(1+m’).

Then, c = 19(1+16)

c=+3J17. m
Example 5.13
Aroad bridge over an irrigation canal have two ﬁ !
semi circular vents each with a span of 20m andthe — - — — — e,

supporting pillars of width 2m . Use Fig.5.16 to write
the equations that represent the semi-verticular vents.

. 0, 0, X
Solution

‘ Let O, O, be the centres of the two semi 2m 20m 2m 20m
circular vents. Fig.5.16
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First vent with centre O, (12,0) and radius Second vent with centre O, (34,0) and
r =10 yields equation to first semicircle as radius » =10 yields equation to second vent as
(x=12) +(y=0)* = 10’ (x—34)2+1” = 10°
=X 4y -24x+44=0,0>00 | 202 68¢4+1056 = 0, > 0.
|

10.

11.

12.

5.3. Conics

EXERCISE 5.1

Obtain the equation of the circles with radius 5 cm and touching x-axis at the origin in general

form.
Find the equation of the circle with centre (2,—1) and passing through the point (3,6) in

standard form.
Find the equation of circles that touch both the axes and pass through (—4,-2) in general form.

Find the equation of the circle with centre (2,3) and passing through the intersection of the
lines 3x—2y—1=0and 4x+y—-27=0.

Obtain the equation of the circle for which (3,4) and (2,-7) are the ends of a diameter.
Find the equation of the circle through the points (1,0), (—1,0), and (0,1).

A circle of area 97 square units has two of its diameters along the lines x+y =5 and x—y =1.
Find the equation of the circle.

Ify= 2\2x+cisa tangent to the circle x* + y* =16, find the value ofc.

Find the equation of the tangent and normal to the circle x* + y* —6x+6y—-8=0 at (2,2).
Determine whether the points(-2,1),(0,0) and (—4,-3)lie outside, on or inside the circle
X'+ —5x+2y-5=0 .

Find centre and radius of the following circles.

(i) ¥ +(y+2) =0 (ii) X+  +6x—-4y+4=0

(iii) ¥* + 3y’ —x+2y-3=0  (iv) 2x* +2)* —6x+4y+2=0

If the equation3x” +(3— p)xy + gy’ —2 px = 8 pq represents a circle,

find p and ¢ . Also determine the centre and radius of the circle.

Definition 5.2

A conic is the locus of a point which moves in a plane, so that its distance from a fixed point
bears a constant ratio to its distance from a fixed line not containing the fixed point.

The fixed point is called focus, the fixed line is called directrix and the constant ratio is called

eccentricity, which is denoted by e.

(1) If this constant e =1 then the conic is called a parabola

(i1) If this constant e <1 then the conic is called a ellipse

(ii1) If this constant e > 1then the conic is called a hyperbola
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5.3.1 The general equation of a Conic
Let § (x1 , yl) be the focus, / the directrix, and e be the eccentricity. Let P(x, y) be the moving point.

By the definition of conic, we have
1

P
—— = constant =e, (1)
PM " P(x,y)
Where SP = \/(x—xl)2 +(y-»)
and PM = perpendicular distance from P(x, )
to the line Ix+my+n=0 Se.»)

Ix+my+n
NP +m?

From (1) we get SP* = &’PM’*

Fig.5.17

2
Ix+my+n
2 2 2
= (x—-x)+(-y)=e |: m :| .
On simplification the above equation takes the form of general second-degree equation
Ax* + Bxy + Cy* + Dx+ Ey+ F =0, where

Al el B 2Ime’ Cl- e‘m’
P+m?’ P+m*’ I +m’
® ®
NOW N 412]/}12@4 8212 eZmZ
Bz—4AC:ﬁ—4(l— - zj(l— - zj
(] +m) I"+m I"+m

=4(e*-1)
yielding the following cases:
(i) B*-44C =0 < e=1 < the conic is a parabola,

(ii) B*>—44C<0 < 0<e<!1 < the conic is an ellipse,
(iii) B*—4A4C>0 < e>1 < the conic is a hyperbola.

5.3.2 Parabola y

Since e=1, for a parabola, we note that the
parabola is the locus of points in a plane that are

equidistant from both the directrix and the focus. M “I

(i) Equation of a parabola in standard form with Vertex
vertex at (0, 0) N

Let S be the focus and/ be the directrix.

Draw SZ perpendicular to the line /. Direi:trbé
Let us assume SZ produced as x-axis and the
perpendicular bisector of SZ produced as y - axis. v

The intersection of this perpendicular bisector with \
SZ be the originO. Fig.5.18

AN
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LetSZ =2a . Then Sis(a,0) and the equation of the directrix isx+a =0.
Let P(x, y) be the moving point in the locus that yield a parabola. Draw PM perpendicular to the

directrix. By definition, e = SP So, SP*=PM*.
PM
Then, (x—a)’+y° =(x+a)’>. On simplifying, we gety” = 4ax which is the equation of the

parabola in the standard form.

The other standard forms of parabola are y* = —4ax,x” =4ay, and x° = —4ay .

Definition 5.3
e The line perpendicular to the directrix and passing through the focus is known as the Axis

of the parabola.
e The intersection point of the axis with the curve is called vertex of the parabola

e Any chord of the parabola, through its focus is called focal chord of the parabola

e The length of the focal chord perpendicular to the axis is called latus rectum of the parabola

Example 5.14
Find the length of Latus rectum of the parabola y* = 4ax .

Solution

Equation of the parabola is y* = 4ax .
Latus rectum LL' passes through the focus (a,0). Refer (Fig. 5.18)
Hence the point L is (a,),).

Therefore y,> = 4a’.
Hence y, =% 2a.

The end points of latus rectum are (a,2a) and (a,—2a). n

Therefore length of the latus rectum LL'=4a.

Note

The standard form of the parabola y* =4ax has for its vertex (0,0), axis as x -axis, focus as
(a,0). The parabola y* = 4ax lies completely on the non-negative side of the x-axis. Replacing y by
—y in y? = 4ax, the equation remains the same. so the parabola y* = 4ax is symmetric about x-axis;
that is, x-axis is the axis and symmetry of y* = 4ax
(ii) Parabolas with vertex at (/,k)

When the vertex is (h,k)and the axis of symmetry is parallel to x -axis, the equation of the
parabola is either (y —k)> =4a(x—h) or (y—k)* =—4a(x—h) (Fig. 5.19, 5.20).

When the vertex is (4, k) and the axis of symmetry is parallel to y -axis, the equation of the

parabola is either (x—#h)> =4a(y —k)or (x—h)* =—4a(y—k) (Fig. 5.21, 5.22).
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Equation

Graph

Vertices

Focus

Axis of
symmetry

Equation of
directrix

Length
of latus
rectum

(y—k)* =da(x—h)

h y/?

'
2=0

0 X
N v

Directrix
x=h—-a

(a) The graph of

Fig. 5.19

fAnk)
S(h+ a,k)

(y—k)2 =4a(x—h)

(h, k)

(h+a,0+k) | y=k

x=h-a

4a

(y=k)’ =—4a(x—h)

Directrix
x=h+a

[
A

-
:
i

A(h,ik)

1

Sth ak)

v
v

(b) The graph of

Fig. 5.20

x'

(v=k)' = ~da(x—h)

(h, k)

(h—a,0+k)

x=h+a

4a

(x—h)* =da(y—k)

Directrix
y=k—a

(c) The graph of
(x—h)" =4a(y~k)

Fig. 5.21

(h, k)

O+ h,a+k)

4a

(x=h)* =—4a(y=Fk)

Directrix
y=k+a

»n v

/ o)\
(d) The graph of
(x—h) =—da(y—k)
Fig. 5.22

(h, k)

O+h,—a+k)

yv=k+a

4a
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5.3.3 Ellipse

We invoke that an ellipse is the locus of a point which moves such that its distance from a fixed
point (focus) bears a constant ratio (eccentricity) less than unity its distance from its directrix bearing

a constant ratio e (0 <e<1).  Vertiges y A
(i) Equation of an Ellipse in standard form Do 0B peyd
i T V) IM/, Latus rectum

£(

-r

Let S be a focus, / be a directrix, e be the eccentricity , NNN\I
C(0.0) 'z

(0<e<l1) and P(x,y)be the moving point. Draw SZ and ﬂqﬂz?o)
PM perpendicular to /. : P 2\ i

Let A and A4’ be the points which divide SZ internally ' Cenire \‘vF(;"Cj =t
and externally in the ratio e:1 respectively. Let 44" =2a. Let Fig.5.23

the point of intersection of the perpendicular bisector with 44" be C'. Therefore CA=a and CA' = a.
Choose C as origin and CZ produced as x -axis and the perpendicular bisector of 44" produced as

y -axis.
By definition,
SA e S4' e
— == and — ==
AZ 1 A'Z 1
SA = edZ SA' = ed'Z
CA-CS = e(CZ—CA) A'C+CS = e(A'C+CZ)
a—-CS = e(CZ—a) .. (1) a+CS = e(a+CZ) ..(2)

(2)+(1) gives cz=2 and (2)—(1) gives CS =ae.
e

Therefore M is (g,yj and S is (ae,0).
e

By the definition of a conic, If_j\lj[ =e = SP*=e’PM’

= (x—ae)’ +(y-0) = e{(x—g):o} which

on simplification yields LI A

a & (1 —e’ )
Since 1—¢€” is a positive quantity, write b° = a’ (1 - ez)

: 2 2 2
Taking ae =c¢,b"=a" —c".
2 2

Hence we obtain the locus of P as x_z + ;;—2 =1 which is the equation of an ellipse in standard

a
form and note that it is symmetrical about x and y axis.

Definition 5.4
(1) The line segment 44" is called the major axis of the ellipse and is of length 2a.
(2) The line segment BB’ is called the minor axis of the ellipse and is of length 25 .
(3) The line segment CA = the line segment CA’' = semi major axis=a and the line segment
CB = the line segment CB' = semi minor axis = b .

(4) By symmetry, taking S'(—ae,0) as focus and x = ~ & a5 directrix /' gives the same ellipse.
e

Thus, we see that an ellipse has two foci, S(ae,0) and S'(—ae,0) and two vertices A(a,0) and
A'(=a,0) and also two directrices, x = g and x = _4 .

e e
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Example 5.15

2 2
Find the length of Latus rectum of the ellipse x_2 + y—z =1.
a

Solution

2 2
The Latus rectum LL' (Fig. 5.22) of an ellipse x_2 + 2}—2 =1 passes through S(ae,0).
a

Hence L is (ae,y,).

2.2 2

Therefore, af +y_12 =1
a b
2
);—12 =1-¢’
y12 =b2(1_ez)
2 2
=b’ [b—zj [since, e’ =1—b—2j
a a
b2
»n =t—.
a

2 b2
That is, the end points of Latus rectum L and L' are (ae,b—] and (ae,——j.
a a

2
Hence the length of latus rectum LL' = 2b .

a [ |

(ii) Types of ellipses with centre at (h,k)

(a) Major axis parallel to the x-axis

From Fig. 5.24

2 2
C CE

a

The length of the major axis is 2a. The length of the minor axis is 26 . The coordinates of the
vertices are (h+a,k) and (h—a,k) , and the coordinates of the foci are (h+c,k) and (h—c,k)

where ¢’ =a* —b.

(b) Major axis parallel to the y-axis
From Fig. 5.25

2 2
(X;Zh) +(y_2k) =lL,a>b
a

The length of the major axis is 2a. The length of the minor axis is 26 . The coordinates of the

vertices are (h,k+a) and (h,k—a) , and the coordinates of the foci are (h,k+c) and (h,k—c),
where ¢> =a* —b°.
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Equation Centre Major Axis Vertices Foci

_\2 o hk parallel to the h—ak h—c.k
(96211)+(y/€):1 (7, k) (h—ak) | (h=-c.k)

- X-axis
a b
\A(h+a, k)
@ X
) x'
4 /’S(h+c, k)

Fig.5.24

(a) Major axis parallel to the x-axis
Foci are ¢ units right and ¢ units left of

centre, where ¢ = g% —b>.

llel to the _ _
(x=h)?  (y—k) T2 (h,k) | Para (hk—a) | (hk-c)
_1 [ >57] i
IR — y-axis (hk+a) | (hk+c)

(h+a,k) | (h+ck)

A dy
A kta) e

~
/- \ S(h,k+c)
0 X

il |,

AT S k)
Ahk-a)*" |

\

Fig.5.25

(b) Major axis parallel to the y-axis
Foci are ¢ units right and ¢ units left of

centre, where ¢ = g*> — b*.

Theorem 5.5
The sum of the focal distances of any point on the ellipse is equal to length of the major axis.
Proof
x2 y2
Let P(x,y) be a point on the ellipse — + 7 =1.
a
Draw MM' through P, perpendicular to A i A
directrices / and /'. : :
M E—| P(x,y) |—E M
Draw PN L to x-axis. o / 4 AN .
g S'-¢,0) C(0,0) N, 1 Z(ale, 0)
By definition SP = ePM Zitale, O, \_/im ;
— eNZ "y ‘ V
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a
=e|l——x|=a-ex . (1
B m
and SP'" = ePM'
= ¢(CN+CZ']
= e[x+£}:ex+a s . (2)
e -
Hence, SP+S'P = a—ex+a+ex=2a 9R3¥3Q

[ |

Remark

(x=h)’  (y—k)
2 + 2
a b
of circle with centre (/4,k)and radiusa.

When b =a, the equation =1, becomes (x—h)’ +(y —k)* = a’ the equation

2

Whenb =a,e = l—a—2 =0. Hence the eccentricity of the circle is zero.
a

Furthere, If_]\lj[ =0 mmplies PM — oo . That is, the directrix of the circle is at infinity.

Remark y

Auxiliary circle or circumcircle is the circle with length of major axis as é%
diameter and Incircle is the circle with length of minor axis as diameter. They * ' AI% ﬁA o
BI

are given by x* +)° =a’ and x* + y* = b” respectively.

Fig.5.27
5.3.4 Hyperbola

We invoke that a hyperbola is the locus of a point which moves such that its distance from a fixed
point (focus) bears a constant ratio (eccentricity) greater than unity its distance from its directrix,
bearing a constant ratio e (e >1).

(i) Equation of a Hyperbola in standard form with
centre at (0, 0)

T -

[y l v N
Let 4 and A" be the points which divide SZ Fig.5.28

Let Sbe a focus, / be the directrix line, e be the eccentricity

e>1 and P(x,y) be the moving point. Draw SZ and PM -

perpendicular to /.

internally and externally in the ratio e:1 respectively.

Let AA'=2a. Let the point of intersection of the perpendicular bisector with 44" be C. Then
CA=CA=a Choose C as origin and the line CZ produced as x -axis and the perpendicular bisector
of AA" as y -axis.

.. A A
By definition, AS =e and A5 =e
AZ A'Z
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= AS=edAZ A'S=ed'Z
= CS-CA=e(CA-CZ) AC+CS=e(AC+CZ)
= CS—-a=e(a—-CZ)...(1) a+CS=e(a+CZ)... (2)

(1)+(2) gives CS =ae and (2)—(1) gives CZ=2.
e

. . . S a
Hence, the coordinates of S are (ae,0). Since PM = x— 2 the equation of directrix is x ——=0.
e e

Let P(x,y) be any point on the hyperbola.

By the definition of a conic, % =e = SP*=e&’PM".

2
Then (x—ae)’ +(y—0)* = &’ (x—gj
e

= (x—ae)’ +y"* = (ex—a)’
= (@ -Dx* -y’ =a’(e’ 1)
x2 2
= —2—% = 1. Since e>1,d> (32 - 1) > 0. Setting a’ (e’ —1) = b*, we obtain the locus of P as
a al((e -1
x2 2
—2—;;—2 = 1 which is the equation of a Hyperbola in standard form and
a

note that it is symmetrical about x and y-axes.

Taking ae = ¢, we get b> =c* —a’.

Definition 5.5
(1) The line segment AA" is the transverse axis of length 2a.

(2) The line segment BB’ is the conjugate axis of length 25 .
(3) The line segment CA = the line segment CA' = semi transverse axis=a and
the line segment CB = the line segment CB' = semi conjugate axis =b .

(4) By symmetry, taking S’(—ae,0) as focus and x=-2 as directrix /' gives the same
e

hyperbola.
Thus we see that a hyperbola has two foci S(ae,0) and S’(—ae,0), two vertices A(a,0)

. . a a
and A'(—a,0) and two directrices x=— and x=——.
e e

2

Length of latus rectum of hyperbola is 2b” ,which can be obtained along lines as that of the
a
ellipse.

Asymptotes

Let P(x,y)be a point on the curve defined by y = f(x), which moves further and further
away from the origin such that the distance between P and some fixed line tends to zero. This fixed
line is called an asymptote.

Note that the hyperbolas admit asymptotes while parabolas and ellipses do not.
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(ii) Types of Hyperbola with centre at (A, k)

y (a) Transverse axis parallel to the x-axis.
] , The equation of a hyperbola with centre C

(h,k)and transverse axis parallel to the x-axis
(x=h) (v=k) _
a’ b’
The coordinates of the vertices are
A(h+a,k)and A'(h—a,k). The coordinates of

the foci are S(h+c,k)and S'(h—c,k)where

c=a’+b.

(Fig. 5.29) is given by 1.

a
. . . x — h i_
Fig. 5.29 The equations of directrices are -

(a) transverse axis parallel to the x-axis

(b) Transverse axis parallel to the y-axis
The equation of a hyperbola with centre
C(h,k) and transverse axis parallel to the

y -axis (Fig. 5.0) is given by

™ ) - X 2 2
- " —k x—nh
XC(hk (y=k) _( bz) -1,
Akt a) da , ,
The coordinates of the vertices are

lpfg N A(h,k+a)and A'(h,k—a) . The coordinates of
N the foci are S(h,k+c)and S'(h,k—c), where
7 c=a’+b.
Fig. 5.30 The equations of directrices are y =k ig .

(b) transverse axis parallel to the y-axis

(1) The circle described on the transverse axis of hyperbola as its diameter is called the auxiliary
circle of the hyperbola. Its equation is x> + y* = a”.

(2) The absolute difference of the focal distances of any point on the hyperbola is constant and is
equal to length of transverse axis. That is, | PS — PS’ |= 2a . (can be proved similar that of ellipse)

So far we have discussed four standard types of parabolas, two types of ellipses and two
types of hyperbolas. There are plenty of parabolas, ellipses and hyperbolas whose equations cannot
be classified under the standard types, For instance consider the following parabola, ellipse, and

hyperbola. y y

0] X

Fig. 5.31
By a suitable transformation of coordinate axes they can be represented by standard equations.
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Example 5.16
Find the equation of the parabola with focus (—\/5,0) and directrix '
\ I}
i

x=+2.
Solution - -
Parabola is open left and axis of symmetry as x -axis and vertex (0,0). / 7
Then the equation of the required parabola is ( v ! :
) S(—/2,0)y ¥
(y=0)" = -42(x~0) Fig.5.32
= ¥y = ~4\2x. "
Example 5.17
Find the equation of the parabola whose vertex is (5,—2) and focus(2,-2).
Solution y
Given vertex A(5,—2)and focus S(2,-2) and the focal distance \“
: . . B 52:-2)
Parabola is open left and symmetric about the line parallel to o,
X -axis.
Then, the equation of the required parabola is -
y
Fig.5.33

(y+2)2 =—4(3)(x-5)

= Y +4y+4=—-12x+60

= P +4y+12x-56=0.

Example 5.18
Find the equation of the parabola with vertex (—1,-2), axis parallel to y -axis and passing through

(3,6).
Solution vty
Since axis is parallel to y-axis the required equation of the
parabola is 5
(x+1) :4a(y+2). . 0 .
Since this passes through (3,6), we get
(3+1)° = 4a(6+2) ) A
| VY
= a= 5 Fig.5.34
Then the equation of parabola is (x+ 1)2 =2(y+2)which on simplifying yields,
|

X' +2x-2y-3=0.
Example 5.19
Find the vertex, focus, directrix, and length of the latus rectum of the parabola x* —4x -5y —1=0.
yh oo

Solution
For the parabola,
¥’ —4x-5y-1=0 ) .
= x'—4x =5y+1 - e >
= x'—4x+4 =5y+1+4. Y
Fig.5.35
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= (x- 2)2 = 5(y+1) which is in standard form. Therefore, 4a =5 and the vertex is (2,—1), and

the focus is (2, %) .

Equation of directrix is y—k+a =0
y+1 +§ =0
4
4y+9 =0.
Length of latus rectum 5 units. [ |
Example 5.20

Find the equation of the ellipse with foci (£2,0), vertices (+3,0).

Solution
From Fig. 5.36, we get |

SS" =2cand 2c=4 ; AA=2a=6
= ¢ =2and a=3, A mmA(lolx
=b =a-c"=9-4=5. ?&y

Major axis is along x -axis, since a > b.
Centre is (0, 0) and Foci are (+2,0). Fig.5.36

2 2

Therefore, equation of the ellipse is RIS

Example 5.21

Find the equation of the ellipse whose eccentricity is 5 one of the foci is (2,3) and a directrix is

x =7 . Also find the length of the major and minor axes of the ellipse.

Solution
By the definition of a conic, SP =e or SP’ =e’PM”*
PM
1
Then, (x=2) +(y-3)' = Z(x—7)2
= 3x° +4y* —2x-24y+3 =0

100

1 g 2 1
= 3jx—=| +4(y-3) =3| = [+4x9-3=—
(x 3) (y=3) (9) 3

(x_;j2+(y—3f

100 100
9 12

=1 which is in the standard form.

2 @:E and
Vo 3
) [0 _10
2 BB m
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Example 5.22
Find the foci, vertices and length of major and minor axis of the conic

4x* +36y> +40x—288y+532=0.

Solution
Completing the square on xand y of 4x”> +36y> +40x—288y+532=0,

4(x* +10x+25-25)+36(y* -8y +16—16)+532 = 0, gives
4(x* +10x+25)+36(y* =8y +16) = —=532+100+576
4(x+5) +36(y—4) =144.
Dividing both sides by 144, the equation reduces to
(x+5)2 N (y—4)2 _
36 4
This is an ellipse with centre (—5,4), major axis is parallel to x -axis, length of major axis is 12

l.

and length of minor axis is 4. Vertices are (1,4) and (-11,4).
Now, ¢’ =a’—b>=36-4=32
and ¢ = +42 .
Then the foci are (—5 - 4\/5, 4) and (—5 + 4\/5, 4) .
Length of the major axis = 2a =12 units and

the length of the minor axis = 2b =4 units. [

Example 5.23
For the ellipse 4x” + y* +24x -2y +21=0, find the centre, vertices, and the foci. Also prove that

the length of latus rectum is 2 .

Solution M
Rearranging the terms, the equation of ellipse is R YA
4x* +24x+y" -2y+21 =0 [\

o x'
Thatis, 4(x* +6x+9-9)+(y* -2y +1-1)+21 = 0 - -
at is, (x X ) (y v ) , e

4(x+3) =36+(y—-1) -1+21 =0, S/

4(x+3) +(y-1) =16, ‘
(x43) +(r=1) Fig.5.37
3 (y-1)
(43 -
4 16
Centre is (-3,1) a=4, b=2, and the major axis is parallel to y -axis
c=16-4=12
c = +23.
Therefore, the foci are (—3,2\/3 +1) and (—3,—2\/5 +1).
Vertices are (3,+4+1). That is the vertices are (3,5) and (3,—3), and
2
the length of Latus rectum = 2b =2 units. (see Fig. 5.37)
a |
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Example 5.24
Find the equation of the hyperbola with vertices (0,%4) and foci(0,+6).

Solution
From Fig. 5.38, the midpoint of line joining foci is the

s} 0.6)
centre C (0,0). \\/

Transverse axis is y -axis 0.4)
AA' = 2a =2a =8, - o -
SS" =2¢=12,c=6 (0~ 4)

a=4 / \
5" 4(0,-6)

b* =c*—a’=36-16=20.

\

Hence the equation of the required hyperbola is y_2 - x_2 = 1. Fig.5.38
16 20 |
Example 5.25
Find the vertices, foci for the hyperbola 9x* —16y° =144
Solution

Reducing 9x”> —16)° = 144 to the standard form,

2 2

we have, XX o 1

16 9
With the transverse axis is along x -axis vertices are (—4, O) and (4, 0);
and ¢’ =a’+b’°=16+9=25, c=5.
Hence the foci are(—5,0) and (5,0). m

Example 5.26
Find the centre, foci, and eccentricity of the hyperbola 11x* —25y° —44x+50y —256 =0

Solution
Rearranging terms in the equation of hyperbola to bring it to standard form,

we have, 11(x* —4x)—25(y* —2y)—256 =0
11(x=2)" =25(y—1)" = 256-44+25

1(x-2) =25(y-1) =275

(-2 -,

25 11
Centre (2,1), a’® =25,p* =11
c =a +b
=25+11=36
Therefore, c =16

and e= < = g and the coordinates of foci are (8,1) and (—4,1) from Fig. 5.39.
a
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YA y'A
D
Sl
@y N
\ ox
19) \
/ \
Fig. 5.39 u

Example 5.27
The orbit of Halley’s Comet (Fig. 5.51) is an ellipse 36.18 astronomical units long and by 9.12

astronomical units wide. Find its eccentricity.

Solution
Given that 2a =36.18, 2b=9.12, we get

e:\/ C \/(36;8)2_(9.212j2

1-— = =

a’ a 36.18

2

_ J(18.09)* - (4.56)° 097
(8.09) -

Note
One astronomical unit (mean distance of Sun and earth) is 1,49,597,870 km , the semi major

axis of the Earth’s orbit.
EXERCISE 5.2

1. Find the equation of the parabola in each of the cases given below:
(1) focus (4,0) and directrix x = —4.

(i1) passes through (2,—-3)and symmetric about y -axis.
(i11) vertex (1,—2) and focus (4,-2) .
(iv) end points of latus rectum (4,—-8) and (4,8) .
2. Find the equation of the ellipse in each of the cases given below:
(1) foci(i3,0),e = % .
(ii) foci (0,+4)and end points of major axis are(0,+5).

(ii1) length of latus rectum 8, eccentricity = 3’ centre (0, 0) and major axis on x -axis.

(iv) length of latus rectum 4, distance between foci 42 , centre (0, 0) and major axis as y - axis.

3. Find the equation of the hyperbola in each of the cases given below:
: : . 3
(i) foci(£2,0), eccentricity = 5

(i1) Centre (2,1), one of the foci (8,1) and corresponding directrix x =4 .

(111) passing through (5, —2) and length of the transverse axis along x axis and of length 8 units.

XII - Mathematics 196

31-01-2020 17:53:37‘ ‘



4. Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
(i) y* =16x (i) x* =24y (iii) y* =-8x
(V) x* —=2x+8y+17=0 (v) y*—4y—-8x+12=0

5. Identify the type of conic and find centre, foci, vertices, and directrices of each of the following:
2 2 2 2 2 2 2 2

Xy o X7 Y ey X0 Y LY oXx
i) —+= =1 i) —+— =1 i) ———=1 v) ———=1
()259 ()3 10 ()25 144 ()16 9
e yz p?
6. Prove that the length of the latus rectum of the hyperbola — —=—=11s —.
a a

7. Show that the absolute value of difference of the focal distances of any point P on the hyperbola
is the length of its transverse axis.

8. Identify the type of conic and find centre, foci, vertices, and directrices of each of the following :

) M € IO € M E APt G N ) R
25 289 00 ' o4 25 6

(r=2) _(x+1)°
25 16
(vi) 9x* —y* =36x—-6y+18=0

(iv) =1 (v) 18x> +12)° —144x + 48y +120 =0

5.4 Conic Sections

In addition to the method to determine the curves discussed in Section 5.3, geometric description
of a conic section is given here. The graph of a circle, an ellipse, a parabola, or a hyperbola can be
obtained by the intersection of a plane and a double napped cone. Hence, these figures are referred to
as conic sections or simply conics.

5.4.1 Geometric description of conic section

A plane perpendicular to the axis of the cone (plane C') intersecting any one nape of the double
napped cone yields a circle (Fig. 5.40) . The plane E, tilted so that it is not perpendicular to the axis,
intersecting any one nape of the double napped cone yields an ellipse (Fig. 5.40). When the plane is
parallel to a side of one napes of the double napped cone, the plane intersecting the cone yields a
parabola (Fig. 5.41). When the plane is parallel to the plane containing the axis of the double cone,
intersecting the double cone yields a hyperbola (Fig. 5.42).

Axis Axis Axis
i
© © <7
i ar Hyperbola
B [
Ellipse
Circle . 1
e c ]
- H'! F » i .
" H.
% e
& & _ ) L) & ( 3
Parabola
Fig. 5.40 Fig. 5.41 Fig. 5.42
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5.4.2 Degenerate Forms

Degenerate forms of various conics (Fig. 5.43) are either a point or a line or a pair of straight
lines or two intersecting lines or empty set depending on the angle (nature) of intersection of the
plane with the double napped cone and passing through the vertex or when the cones degenerate into
a cylinder with the plane parallel to the axis of the cylinder.

If the intersecting plane passes through the vertex of the double napped cone and perpendicular
to the axis, then we obtain a point or a point circle. If the intersecting plane passes through a generator
then we obtain a line or a pair of parallel lines, a degenerate form of a parabola for which A=B=C=0
in general equation of a conic and if the intersecting plane passes through the axis and passes through
the vertex of the double napped cone, then we obtain intersecting lines a degenerate of the hyperbola.

Single Point  Single Line Intersecting iines
) / ><
Fig. 5.43

Remark
2

In the case of an ellipse (0<e<1) where e=,[l1-— . As e—0, é—>1 1.e., b—a or the
a a

lengths of the minor and major axes are close in size. i.e., the ellipse is close to being a circle. As
b : . : : L
e —>1, —— 0 and the ellipse degenerates into a line segment i.e., the ellipse is flat.

a
Remark

2
In the case of a hyperbola (e >1) where e:,/lﬁtb—2 As e— 1, 2—)0 ie.,as e—>1, b isvery
a a

small related to a and the hyperbola becomes a pointed nose. As e — «, b is very large related to a

and the hyperbola becomes flat.

5.4.3 Identifying the conics from the general equation of the conic
Ax’ +Bxy+Cy* +Dx+Ey+F =0.

The graph of the second degree equation is one of a circle, parabola, an ellipse, a hyperbola, a
point, an empty set, a single line or a pair of lines. When,

(1) A=C=1,B=0,D=-2h, E=-2k, F=h"+k>—r" the general equation reduces to
(x—h)* +(y—k)* =r*, which is a circle.

(2) B=0 andeither 4 or C =0, the general equation yields a parabola under study, at this level.
(3) 4= C and 4 and C are of the same sign, the general equation yields an ellipse.

(4) A=C and 4 and C are of opposite signs, the general equation yields a hyperbola

(5) A=C and B=D =E = F =0, the general equation yields a pointx’ + y* =0.
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(6) A=C=F and B=D=E =0, the general equation yields an empty set x> +)*+1=0, as
there is no real solution.

(7) A=0 or C=0 and others are zeros, the general equation yield coordinate axes.

(8) 4 =-C and rests are zero, the general equation yields a pair of lines x* — y*> =0.

Example 5.28
Identify the type of the conic for the following equations:
(1) 16y* =—4x* +64 Q) X*+y =—dx—y+4
3) x*—2y=x+3 (4) 4x*—-9y* —16x+18y—-29=0
Solution
Q.no. Equation condition Type of the conic
1 16y = —4x” + 64 3 Ellipse
2 X4yt =—dx—y+4 1 Circle
3 X' =2y=x+3 2 parabola
4 4x* —9y* —16x+18y-29=0 4 Hyperbola .

EXERCISE 5.3

Identify the type of conic section for each of the equations.
1. 2x*—y* =7 2.3x* +3y* —4x+3y+10=0 3.3x° +2y* =14

4. > +y +x—y=0 5. 11x*=25y" —44x+50y-256=0  6.y° +4x+3y+4=0

5.5 Parametric form of Conics
5.5.1 Parametric equations

Suppose f(#)and g(7)are functions of '¢'. Then the equations x = f(¢) and y = g(¢) together describe
a curve in the plane . In general '¢' is simply an arbitrary variable, called in this case a parameter, and this
method of specifying a curve is known as parametric equations. One important interpretation of '#' is time
. In this interpretation,the equations x = f(¢) and y = g(¢) give the position of an object at time '¢'.

So a parametric equation simply has a third variable, expressing x and y in terms of that third

variable as a parameter . A parameter does not always have to be '#'. Using 't' is more standard but

one can use any other variable. Y
(i) Parametric form of the circle X’ + y* =a’ P(x,y)
Let P(x, y) be any point on the circlex” + y* =a’. ,
Join OP and let it make an angle 6 with x -axis. _ 0 .
0 M X

Draw PM perpendicular to x -axis. From triangle OPM ,
x=0OM =acos0
y=MP =asin6 ]

Thus the coordinates of any point on the given circle are (a cos0,asin 6) and Fig. 5.44
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x=acosf,y=asinf, 0<60 <2r are the parametric equations of the circle x* + y* =a’.

Conversely, if

then,

Q=

Squaring and adding, we get,
2 2
y
Tt
a

X
2
a

Thus x*+)°

Note

of circlex” + y* = a’,

¢t increasing in anticlockwise direction.

x =acosf, y=asinf, 060 <2rm,

cosO,Z=sin9 .

a

cos’0+sin’ O =1.

(1) x=acost,y=asint, 0<¢t<2x also represents the same parametric equations y

a’ yields the equation to circle with centre (0,0) and radius a units.

(2) x=asint,y=acost,0<¢<2r also represents the same parametric equations A . v

of circle x> +)* =a’,

¢ increasing in clockwise direction.

(ii) Parametric form of the parabola y* = 4ax

Let P(x,,y,) be a point on the parabola

¥ = dax,
) = (2a)(2x,)

® 2

BN, (—oo <t <00) say

2a N

v, = 2at, 2x, =yt

2x, = 2at(t)

X, = at’

Parametric form of y2 =dax is x = atz,y =2at, —0<t<w,

Conversely if x = at® and y =2at,—0 <t < oo, then eliminating 't' between these equations we

get y* =4ax .
x* )y vA
(iii) Parametric form of the Ellipse —-+ W =1 0
a
Let P be any point on the ellipse. Let the ordinate MP meet the o
- X
auxiliary circle at Q. A cf M4
Let ZLACQO =«
CM = acosa, MQ=asina !
and O(acosa,asin) Fig. 5.47

Now x -coordinate of P is acosa . Ifits y-coordinate is ', then P(acosa, ") lies on
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whence

=

Hence P is (acosa,bsina).

COS2 o+

12

i

y' =bsina.

The parameter a is called the eccentric angle of the point P . Note that a is the angle which the

line CQ makes with the x -axis and not the angle which the line CP makes with it.

Hence the parametric equation of an ellipse is x =acos6, y =bsin0 , where 0 is the parameter

0<0<L2r.

(iv) Parametric form of the Hyperbola x_z -2 -1
a

2 2

y
bZ

Similarly, parametric equation of a hyperbola can be derived as x =asecf, y =btan6 , where

. T
0 is the parameter. —7 <0 <7 except 0 = iz.

In nutshell the parametric equations of the circle, parabola,ellipse and hyperbola are given in the

following table.
Conic Parametric Parameter Range of Any point on the
equations parameter conic
) x=acos6 ‘0’ or
Circle 0 0<6<2n
y=asinf (acosO,asinB)
— t2 ‘t’or
@ Parabola = t —00 < f <0
y= 2at (at2,2at)
) x=acosf ‘0’ or
Ellipse 0 0<60<L2m
y =bsin0 (acosB,bsin0)
x =asecH —n1<0<rw ‘0’ or
Hyperbola 0 .
y=btan6 except 6 =i3 (asecO,btan0)
Remark

(1) Parametric form represents a family of points on the conic which is the role of a parameter.
Further parameter plays the role of a constant and a variable, while cartesian form represents
the locus of a point describing the conic. Parameterisation denotes the orientation of the

curve.

(2) A parametric representation need not be unique.

(3) Note that using parameterisation reduces the number of variables at least by one.

5.6 Tangents and Normals to Conics

Tangent to a plane curve is a straight line touching the curve at exactly one point and a straight line

perpendicular to the tangent and passing through the point of contact is called the normal at that point.

5.6.1 Equation of tangent and normal to the parabola y’ = 4ax

(i) Equation of tangent in cartesian form

LetP(xl, yl) and Q(xz, V, )be two points on a parabola y* = 4ax .
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Then, v’ = 4ax, and y,” = 4ax,, rt Plx,y)

and y12 _y22 = 4a(x, —x,).

Simplifying, 2122 = da , the slope of the chord PQ. 4% Y

X=X Y+ ' s
4 e
Thus (y=3) = ———(x—x,), represents the equation RN Qx,y,)
Nt y i y? =4ax
of the chord PQ. .
Fig. 5.48

When QO — P, or y, = y, the chord becomes tangent at P .

Thus the equation of tangent at (x;,y, ) is
4a 2a .
y—y = —(x—x;) where — is the slope of the tangent (1)
2y, N
w, =y = 2ax-2ax,

vy, —4ax, = 2ax—2ax,

w :2a(x+x1)

(ii) Equation of tangent in parametric form

Equation of tangent at (at>,2at) on the parabola is

® y(Q2at) = 2a(x+at?)

yt:erat2

(iii) Equation of normal in cartesian form

From (1) the slope of normal is _ A

2a
Therefore equation of the normal is

Y=N —;—;(x—xl)

2ay-2ay, = -y x+yx

xy +2ay = y(x,+2a)

|xyl +2ay = x,y, +2ay, |

(iv) Equation of normal in parametric form
Equation of the normal at (at*,2at) on the parabola is

x2at+2ay = at’(2at)+2a(2at)

2a(xt+y) = 2a(at’ +2at)

y+xt=at’ +2at

Theorem 5.6
Three normals can be drawn to a parabola y* = 4ax from a given point, one of which is always real.
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Proof
y* =4ax is the given parabola. Let («,3) be the given point.
Equation of the normal in parametric form is
y =—tx+2at+at’
If m 1is the slope of the normal then m =—¢.
Therefore the equation (1) becomes  y = mx—2am—am’.
Let it passes through («, 3), then
B = mo—2am—am’

am’ +(2a—a)m+5 =0

. (1)

which being a cubic equation in m, has three values of m . Consequently three normals, in
general, can be drawn from a point to the parabola, since complex roots of real equation, always occur
in conjugate pairs and (1) being an odd degree equation, it has atleast one real root. Hence atleast one

normal to the parabola is real. u
5.6.2 Equations of tangent and normal to Ellipse and Hyperbola
(the proof of the following are left to the reader)
(1) Equation of the tangent to the elhpse —+ ;;—2 =1
a’
(i) at (x,,y,) is —+ );yl =1 cartesian form
a’
.. \n, XcosO@ ysinf ) ®
(i1) at '0 + 5 =1. parametric form
a
(2) Equation of the normal to the elhpse —+ ;;—2 =1
a’
2 2
(1) at (x,,y) is ax_by =a’-b’ cartesian form
X i
(i) at '0'is —— @ .by =a’ —b° parametric form
cosf sinf
2 2
(3) Equation of the tangent to the hyperbolax— - Jb}_z =1
a’
(1) at (x,,y) 1s % — % =1 cartesian form
(i1) at '@"' is xsecd _y teZl)nG =1 parametric form
2 2
(4) Equation of the normal to the hyperbola % - Jb;_z =1
2 2
(1) at (x,,y) is ax, by =a’+b’ cartesian form
X N
(i1) at '@"' is @ by =a’+b’ parametric form.
secf tan6
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5.6.3 Condition for the line y = mx + ¢ to be a tangent to the conic sections
(i) parabola y* =4ax

Let (x,,¥,) be the point on the parabola y* =4ax . Then y> = 4ax, (1)
Let y =mx+c be the tangent to the parabola .. (2)
Equation of tangent at(x,, , ) to the parabola from 5.6.1 is yy, = 2a(x+x,). .03
Since (2) and (3) represent the same line, coefficients are proportional.
Y, 2a 2ax
1T m
2a c

SN ==
m m

2
Then (1) becomes, (ﬁ = 4a(£J
m

m

= |C=—

. . 2 . .
So the point of contact is (iz , _aj and the equation of tangent to parabola is y = mx + 4,
m m m
The condition for the line y =mx + c to be tangent to the ellipse or hyperbola can be derived as
follows in the same way as in the case of parabola.

2 2

PN xt oy
(ii) ellipse — +— =1
a b
x2 y2
Condition for line y=mx+c to be the tangent to the ellipse —2+F=1
am b’ !
is ¢*=a’m”+b*>, with the point of contact is [— ' ,—j and the equation of tangent is
c c
y=mx*tNa’m’ +b” .
2 2
(iii) Hyperbola *_ _ Y _q
a b
x2 y2
Condition for line y=mx+c to be the tangent to the hyperbola _2_b_2:1
a

2 2
am b . .
,——j and the equation of tangent is
c c

is ¢® =a’m”>—b*, with the point of contact is (—
y=mx*tNa'm’ -b> .

Note

(1) In y=mx+~a’m* +b*, either y =mx+~a’m’ +b> ory=mx—+a’m’ +b* is the equation

to the tangent of ellipse but not both.

(2) In y=mx+~a’m’ —b*  either y = mx+~a’m’ —b> or y=mx—~a’m’> —b’ is the equation

to the tangent of hyperbola but not both.
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Results (Proof, left to the reader)

(1) Two tangents can be drawn to (i) a parabola (ii) an ellipse and (iii) a hyperbola, from any
external point on the plane.

(2) Four normals can be drawn to (i) an ellipse and (ii) a hyperbola from any external point on the
plane.
(3) The locus of the point of intersection of perpendicular tangents to
(i) the parabola y* =4ax is x=—a (the directrix).

2 2

(ii) the ellipse = +2—=1 is x> +y* = a* +b* ( called the director circle of ellipsc).
a

2 2
(iii) the hyperbola x_2 —~ Z—z =11is x>+ y* =a’ —b* (called director circle of hyperbola).
a

Example 5.29
Find the equations of tangent and normal to the parabolax® + 6x+4y+5=0at (1,-3).

Solution
Equation of parabola is x> +6x+4y+5=0.

X +6x+9-9+4y+5= 0
(x+3)° = —4(y-1) .. (1)
Let X = x+3,Y=y-1

Equation (1) takes the standard form

X? = 4y
Equation of tangent is XX, = 2(Y+Y)
At (1,-3) X, = 1+43=4Y,=-3-1=-+4

Therefore, the equation of tangent at (1,-3) is
(x+3)4 = 2(y—-1-4)
2x+6

-y+5.
2x+y+1=0.
Slope of tangent at(1,-3)is—2, so slope of normal at (1,-3)is %

Therefore, the equation of normal at (1,-3) is given by

1
+3 = =(x-1
y 5 =D
2y+6 = x-1
x=2y-7 =0. [ |

Example 5.30
Find the equations of tangent and normal to the ellipse x* +4y” =32 when 0 = % .
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Solution
Equation of ellipse is

. T .
Equation of tangent at 0 = 2 1s

Equation of normal is

That is

Aliter

x*+4y* =32
2 2
X_+y_ :1
32 8
a® =32, b* =8

a=4J2, b=22

T . T
Xcos— ysin—
4 4

+ =1
a2 22
£+Z: 1
8 4
x+2y-8=0.
4\/§x_2\/§y ~37-3
T .7
cos— sin—
4 4
8x—4y =24
2x—y—-6 =0.
A, 0=1,
4

". Equation of tangent at 6 :% is same at (4,2).

Equation of tangent in cartesian form is

Slope of tangent is —%

Slope of normal is 2
Equation of normal is

2x*+7y° =14,

2. Find the equations of tangents to the hyperbolaic—6 ) =1which are parallel to10x -3y +9 =0.

3. Show that the line x — y + 4 = 0 is a tangent to the ellipse x> + 3> =12 . Also find the coordinates

of the point of contact.
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=(4,2)
xx, yy
RN
x+2y-8 =0
y=2 =2(x-4)
y—=2x+6 =0.

EXERCISE 5.4

1. Find the equations of the two tangents

2 2

Y

206

that can be drawn from (5,2)to the ellipse
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4. Find the equation of the tangent to the parabola y* =16x perpendicular to 2x+2y+3=0.
5. Find the equation of the tangent at¢ = 2 to the parabola y* = 8x . (Hint: use parametric form)
6. Find the equations of the tangent and normal to hyperbola 12x* —9y* =108 at 0 = % (Hint:

use parametric form)
7. Prove that the point of intersection of the tangents at ‘#,” and ‘¢, ’on the parabola y* = 4ax is

[att,, a(t,+1,)].

8. If the normal at the point ‘#,” on the parabola y* =4ax meets the parabola again at the point

l

2
‘t,’, then prove that ¢, = —[Zl +—J .

5.7 Real life Applications of Conics ik

5.7.1 Parabola LMPPSL

The interesting applications of Parabola involve their use as reflectors and receivers of light
or radio waves. For instance, cross sections of car headlights, flashlights are parabolas wherein the
gadgets are formed by the paraboloid of revolution about its axis. The bulb in the headlights, flash
lights is located at the focus and light from that point is reflected outward parallel to the axis of
symmetry (Fig. 5.60) while Satellite dishes and field microphones used at sporting events, incoming
radio waves or sound waves parallel to the axis that are reflected into the focus intensifying the same
(Fig. 5.59). Similarly, in solar cooking, a parabolic mirror is mounted on a rack with a cooking pot
hung in the focal area (Fig. 5.1). Incoming Sun rays parallel to the axis are reflected into the focus
producing a temperature high enough for cooking.

Parabolic arches are the best stable structures also considered for their beauty to name a few, the
arches on the bridge of river in Godavari, Andhra Pradesh, India, the Eiffel tower in Paris, France.

Fig. 5.;9. Fig. 5.50
5.7.2 Ellipse

According to Johannes Kepler, all planets in the solar system revolve
around Sun in elliptic orbits with Sun at one of the foci. Some comets have
elliptic orbits with Sun at one of the foci as well. E.g. Halley’s Comet that is
visible once every 75 years with e~ 0.97in elliptic orbit (Fig. 5.51). Our

Jupiter

satellite moon travels around the Earth in an elliptical orbit with earth at one
of its foci. Satellites of other planets also revolve around their planets in

elhptlcal orbits as well. The elliptical orbit of Halley’s Comet

Elliptic arches are often built for its beauty and stability. Steam boilers Fig. 5.51
are believed to have greatest strength when heads are made elliptical with
major and minor axes in the ratio 2:1.
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In Bohr-Sommerfeld theory of the atom electron orbit can be
circular or elliptical. Gears are sometimes (for particular need)
made elliptical in shape. (Fig. 5.52)

The shape of our mother Earth is an oblate spheroid i.e., the Fig. 5.52
solid of revolution of an ellipse about its minor axis, bulged along
equatorial region and flat along the polar region.

The property of ellipse, any ray of light or sound released from a focus of the ellipse on touching
the ellipse gets reflected to reach the other focus (Fig. 5.62), which could be proved using concepts of
incident rays and reflected rays in Physics.

An exciting medical application of an ellipsoidal reflectors is a device called a Lithotripter
(Fig. 5.4 and 5.63) that uses electromagnetic technology or ultrasound to generate a shock wave
to pulverize kidney stones. The wave originates at one focus of the cross-sectional ellipse and is
reflected to the kidney stone, which is positioned at the other focus. Recovery time following the use
of this technique is much shorter than the conventional surgery, non-invasive and the mortality rate is
lower.

5.7.3 Hyperbola

Some Comets travel in hyperbolic paths with the Sun at one focus, such comets pass by the Sun
only one time unlike those in elliptical orbits, which reappear at intervals.
Wealso see hyperbolas in architecture, such as Mumbai Airport terminal (Fig. 5.53), in cross section

of a planetarium, an locating ships (Fig. 5.54), or a cooling tower for a steam or nuclear power plant.
(Fig. 5.5)

Fig. 5.53 Fig. 5.54

Example 5.31
A semielliptical archway over a one-way road has a height of 3m and a width of 12m . The truck

has a width of 3m and a height of 2.7m . Will the truck clear the opening of the archway? (Fig. 5.6)

Solution
" 03)

Since the truck’s width is3m , to determine the clearance,

we must find the height of the archway 1.5m from the centre.
Ifthis heightis 2.7m or less the truck will not clear the archway.

..........

From the diagrama =6 and b =3 yielding the equation D e M
2 2 .
of ellipse asx—2+y—2=1, Fig. 5.55
6° 3
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The edge of the 3m wide truck corresponds to x =1.5m from centre We will find the height of
the archway 1.5m from the centre by substituting x =1.5and solving for y

(3)2
~ 2
2 y _1

+— =
36 9
9
P =9/ 1-—
4 144
_9(135) _ 135
144 16
_ W135
YTy
_11.62
4
=2.90
Thus the height of arch way 1.5m from the centre is approximately 2.90m . Since the truck’s
height is 2.7m , the truck will clear the archway. [ |

Example 5.32
The maximum and minimum distances of the Earth from the Sun respectively are 152x10°km

and 94.5x10°km. The Sun is at one focus of the elliptical orbit. Find the distance from the Sun to the

other focus.

Solution Earth
AS = 94.5x10° km, SA'=152x10° km
a+c =152x10° Sun
a—c = 94.5x10° K s
Subtracting 2¢ = 57.5x10° =575x10° km
Distance of the Sun from the other focus is SS’=575x10° km. Fig. 5.56 [ |
Example 5.33

A concrete bridge is designed as a parabolic arch. The road over bridge is 40m long and the
maximum height of the arch is 15m . Write the equation of the parabolic arch.

Solution
YA
From the graph the vertex is at (0,0) and the parabola is open down

Equation of the parabola isx* = —4ay

(—20,—15) and (20,—-15) lie on the parabola

20> = —4a(-15) -
4a = 400
15
-80
X =—xy
Therefore equation is 3x* = —80y u
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Example 5.34
The parabolic communication antenna has a focus at 2m distance from the vertex of the antenna.

Find the width of the antenna 3m from the vertex.

Solution
Let the parabola be y* = 4ax.

Since focus is 2m from the vertex a = 2

Equation of the parabola is y* = 8x

Let P be a point on the parabola whose x -coordinate is 3m from the

vertex P (3,y)
y* = 8x3
y = 8x3
=26

The width of the antenna 3m from the vertex is4~/6 m . ]

Fig. 5.58

5.7.4 Reflective property of parabola

The light or sound or radio waves originating at a parabola’s focus are reflected parallel to the
parabola’s axis (Fig. 5.60) and conversely the rays arriving parallel to the axis are directed towards
the focus (Fig. 5.59).

Example 5.35

: 1 . .
The equation y = 3—2x2 models cross sections of parabolic mirrors that are used for solar energy.

There is a heating tube located at the focus of each parabola; how high is this tube located above the

vertex of the parabola? v
Solution
Equation of the parabola is
I,
= —Xx S
Y \X
That is x> = 32y ;the vertex is (0,0) = 5 -
= 4®)y Fig. 5.59
=>a =8

So the heating tube needs to be placed at focus (0,a). Hence the heating tube needs to be placed

8 units above the vertex of the parabola. [

Example 5.36

A search light has a parabolic reflector (has a cross section that forms a ‘bowl’). The parabolic
bowl is 40cm wide from rim to rim and 30cm deep. The bulb is located at the focus .

(1) What is the equation of the parabola used for reflector?

(2) How far from the vertex is the bulb to be placed so that the maximum distance covered?
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Solution y

Let the vertex be (0,0).

The equation of the parabola is

Y = dax 0 s

(1) Since the diameter is 40cm and the depth is 30cm , the point
(30,20) lies on the parabola. y

20 = 4ax30 Fig. 5.60
4a = ﬂzﬂ-
30 3
.. 40
Equationis y° = ?x,

(2) The bulb is at focus (a,0). Hence the bulb is at a distance of %cm from the vertex.

Example 5.37

2 2

An equation of the elliptical part of an optical lens system isf—6+ % =1. The parabolic part of

the system has a focus in common with the right focus of the ellipse .The vertex of the parabola is at

the origin and the parabola opens to the right. Determine the equation of the parabola.

Solution m
In the given ellipse a° =16, b> =9

then C2 = a2 —bz A’ S’

02 = 16_9 - g
=7
c=+J7 !
Fig. 5.61

Therefore the foci are F(\ﬁ,O),F’(—\ﬁ,O) . The focus of the parabola is (\/7,0) =a= \/7

Equation of the parabola is y* = 47x. -

5.7.5 Reflective Property of an Ellipse
The lines from the foci to a point on an

ellipse make equal angles with the tangent line at
that point (Fig. 5.62).

Shock, waves
- 5 I§%dney
ones

<«

The light or sound or radio waves emitted
from one focus hits any point P on the ellipse is

received at the other focus (Fig. 5.63). Fig. '.5.62 Fig. 5.63

Example 5.38
A room 34m long is constructed to be a whispering gallery. The room has an elliptical ceiling,

as shown in Fig. 5.64. If the maximum height of the ceiling is 8m , determine where the foci are

located.
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Solution Elliptical ceiling of a
The length a of the semi major axis of the elliptical yh  whispering gallery
ceiling is17m . The height b of the semi minor axis is 8m .

Thus |
cc=a-b=17"-8 -

then ¢ = /289 —64 =+/225

=15 Fig. 5.64
For the elliptical ceiling the foci are located on either side about 15m from the centre, along its

major axis. u
A non-invasive medical miracle
In a lithotripter, a high-frequency sound wave is emitted from a source that is located at one of

the foci of the ellipse. The patient is placed so that the kidney stone is located at the other focus of the
ellipse.

Example 5.39

(x-11)" 7

If the equation of the ellipse is ETYRE + o =1 (x and y are measured in centimeters) where

to the nearest centimeter, should the patient’s kidney stone be placed so that the reflected sound hits
the kidney stone?

Solution
2
. . . (X—ll) y2 .. -+
The equation of the ellipse is ————+=—=1. The origin

484 64 Ultrasound == ¥ i o Kidney

of the sound wave and the kidney stone of patient should be at the  emitter ¥ -
foci in order to crush the stones. B Y Je
@ = 484 and b’ = 64 e ISR Kidlcy
stone
¢ = a-b :
Fig. 5.65
= 484—-64
= 420
c = 205

Therefore the patient’s kidney stone should be placed 20.5cm from the centre of the ellipse. W

5.7.6 Reflective Property of a Hyperbola

The lines from the foci to a point on a hyperbola make equal angles with the
tangent line at that point (Fig. 5.66).

The light or sound or radio waves directed from one focus is received at the y »

other focus as in the case ellipse (Fig. 5.54) used in spotting location of ships
sailing in deep sea.

Fig. 5.66
Example 5.40

Two coast guard stations are located 600 km apart at points A4(0,0)and B(0,600). A distress
signal from a ship at P is received at slightly different times by two stations. It is determined that the
ship 15 200 km farther from station 4 than it is from station B . Determine the equation of hyperbola
that passes through the location of the ship.
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Solution
Since the centre is located at (0,300), midway between the two foci, which are the coast guard

(y—300)" (x-0)

stations, the equation is 5 5 1. ...(1
a

To determine the values of a and b, select two points known to be on the hyperbola and substitute

2

each point in the above equation.
The point(0,400) lies on the hyperbola, since it is 200 km further from Station 4 than from

(400-300)° 0 100?

station B. e s =1 p =1,a* =10000 . There is also a point (x,600) on the hyperbola
such that 600” + x* = (x +200)’ . "t
360000+ x> = x° +400x + 40000 600] (x, 600)
x = 800
600-300)> (800—0)’ 300 +
Substituting in (1), we have ( ) i - x+200
10000 b 4 x
o 640000 _ - 0.0) >
b? Y
b* = 80000 Fig. 5.67
(y-300) &

Thus the required equation of the hyperbola is - =1
10000 80000

The ship lies somewhere on this hyperbola. The exact location can be determined using data from
a third station.

Example 5.41 u

Certain telescopes contain both parabolic mirror and a hyperbolic mirror. In the telescope shown in
figure 5.68 the parabola and hyperbola share focus F; which is 14m above the vertex of the parabola.
The hyperbola’s second focus F, is 2m above the parabola’s vertex. The vertex of the hyperbolic

mirror is 1m below F|. Position a coordinate system with the origin at the centre of the hyperbola and

with the foci on the y -axis. Then find the equation of the hyperbola.

Solution
. F H
Let ¥, be the vertex of the parabola and o "
Y Hyperbo a?
¥, be the vertex of the hyperbola. \")

FF, =14-2=12m,2c=12,¢c=6
The distance of centre to the vertex of the hyperbolais a =6-1=5

b =c*-a°

= 36-25=11. . Parabola
2 2
Therefore the equation of the hyperbola is ;—5 — T_l =1. Fig. 5.68
|
213 Two Dimensional Analytical Geometry - 11

| YT T ] ® (. T

‘ ‘ Chapter 5 Analytical Geometry.indd 213 @ 31-01-2020 17:58:48‘ ‘



EXERCISE 5.5

. A 'bridge has a parabolic arch that is 10m high in the centre and 30m wide at the bottom. Find

the height of the arch 6m from the centre, on either sides.

. A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total

width of the highway (not the opening) is to be 16m, and the height at the edge of the road
must be sufficient for a truck 4m high to clear if the highest point of the opening is to be 5m
approximately . How wide must the opening be?

. At a water fountain, water attains a maximum height of 4m at horizontal distance of 0.5m

from its origin. If the path of water is a parabola, find the height of water at a horizontal
distance of 0.75m from the point of origin.

. An engineer designs a satellite dish with a parabolic cross section. The dish is 5m wide at the

opening, and the focus is placed 1.2m from the vertex

(a) Position a coordinate system with the origin at the vertex and the x -axis on the parabola’s
axis of symmetry and find an equation of the parabola.

(b) Find the depth of the satellite dish at the vertex.

. Parabolic cable of a 60m portion of the roadbed of a suspension bridge are positioned as

shown below. Vertical Cables are to be spaced every 6m along this portion of the roadbed.
Calculate the lengths of first two of these vertical cables from the vertex.

Fig. 5.69
. Cross section of a Nuclear cooling tower is in the shape of a hyperbola with equation
2 2
;? - ﬁ =1 . The tower is 150m tall and the distance from the top of the tower to the centre

of the hyperbola is half the distance from the base of the tower to the centre of the hyperbola.
Find the diameter of the top and base of the tower.
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10.

Choose the correct or the most suitable answer from the given four alternatives :

. Arod of length 1.2m moves with its ends always touching the coordinate axes. The locus of a

point P on the rod, which is 0.3m from the end in contact with x -axis is an ellipse. Find the
eccentricity.

. Assume that water issuing from the end of a horizontal pipe, 7.5m above the ground, describes

a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5m
below the line of the pipe, the flow of water has curved outward 3m beyond the vertical line

through the end of the pipe. How far beyond this vertical line will the water strike the ground?

. On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height

of 4m when it is 6m away from the point of projection. Finally it reaches the ground 12m
away from the starting point. Find the angle of projection.

Points A and Bare 10km apart and it is determined from the sound of an explosion heard at
those points at different times that the location of the explosion is 6 km closerto 4 than B .

Show that the location of the explosion is restricted to a particular curve and find an equation

of it.
@ EXERCISE 5.6 |

1. The equation of the circle passing through (1,5) and (4,1) and touching y -axis is

X+ =5x—6y+9+A(4x+3y—19)=0where A is equal to
40

40 40
(1) 0,—? (2) 0 (3) ry 4) o

. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half

the distance between the foci is

4 4 2 3
(1) 3 (2) e (3) NG 4) 5

. The circle x* +y* = 4x+8y + 5intersects the line3x—4y = m at two distinct points if

(1) 15<m <65 (2) 35<m <85 (3) -85<m<-35 (4) -35<m<15

. The length of the diameter of the circle which touches the x -axis at the point (1,0) and passes

through the point (2,3).

6 5 10 3
(1) 3 2) 3 ©) Y (4) 3

. The radius of the circle 3x* + by” +4bx —6by +b* =0 is

(1) 1 (2) 3 (3) V10 () V11

. The centre of the circle inscribed in a square formed by the lines x*—8x—12=0 and
Y =14y +45=0 is
(1) (4,7) 2) (7,4 3) 0.4 “4) (4,9
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10.

I1.

12.

13.

14.

. The equation of the normal to the circle x* + y* —2x—2y+1=0 which is parallel to the line
2x+4y=31s
(1) x+2y=3 (2) x+2y+3=0 (3) 2x+4y+3=0 (4) x-2y+3=0
. If P(x,y) be any point on 16x” +25y* =400 with foci F;(3,0) and F,(-3,0) then PF, + PF,
1s
(1) 8 2)6 (3)10 (4) 12
. The radius of the circle passing through the point(6,2)two of whose diameter are x+ y =6
and x+2y=41s
(1) 10 ) 245 3) 6 (4) 4
x2 2 x2 2
The area of quadrilateral formed with foci of the hyperbolas —- - 2}—2 =1 and — —% =-1
a a
is
(1) 4(a® +b%) (2) 2(a®* +b%) (3) a*+b’ (4) %(a2 +b%)

If the normals of the parabola y* = 4x drawn at the end points of its latus rectum are tangents
to the circle (x—3)* +(y+2)> =77, then the value of »* is

(12 (2)3 31 (4) 4

If x+y =k is a normal to the parabola y* =12x, then the value of k is

(1) 3 ) -1 3) 1 4) 9

2 2

The ellipse E, %+y7=1is inscribed in a rectangle R whose sides are parallel to the

coordinate axes. Another ellipse £, passing through the point (0, 4) circumscribes the rectangle

R . The eccentricity of the ellipse is

z Ve

2 3 1 3
(1) - (2) - 3) 5 4) 2

2 2

Tangents are drawn to the hyperbola% - yj =1parallel to the straight line2x — y =1. One of

the points of contact of tangents on the hyperbola is

(1) [%_T;j @) (%%] ) [%%) @ (343.-242)

2 2

15. The equation of the circle passing through the foci of the ellipsex— + 2 =1 having centre at
(0,3) is
() x*+y°—6y-7=0 Q) x> +y*—6y+7=0
3) x> +y°—6y-5=0 4) x> +y°—6y+5=0
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16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Let C be the circle with centre at(1,1) and radius =1. If T is the circle centered at(0, y)

passing through the origin and touching the circle C externally, then the radius of 7' is equal

to
2 0% 3+ @+
V2 2 2 4
Consider an ellipse whose centre is of the origin and its major axis is along x-axis. If its

eccentrcity 1s gand the distance between its foci is 6, then the area of the quadrilateral

inscribed in the ellipse with diagonals as major and minor axis of the ellipse is
(1)8 (2) 32 (3) 80 (4) 40

2 2
Area of the greatest rectangle inscribed in the ellipse x_2 + Z—z =11is
a

(1) 2ab () ab (3) Jab (4) %

An ellipse has OB as semi minor axes, /' and F' its foci and the angle FBF' is a right angle.

Then the eccentricity of the ellipse is

1 1 1 1
1) — 2) — 3) — 4) —
(1) 5 2) 3 G) 7 4 NE

2
The eccentricity of the ellipse (x—3)* +(y—4)* = % is

\/g 1 1 1
1) — 2) — 3) — 4) —
()2 ()3 ()3,—2 ()\6

If the two tangents drawn from a point P to the parabola y* = 4x are at right angles then the

locus of P is

(1) 2x+1=0 2) x=-1 (3) 2x-1=0 4) x=1

The circle passing through (1, -2) and touching the axis of x at (3,0) passing through the point
(1) (=5,2) (2) (2,-5) 3) 5,-2) 4 (=2,5)

The locus of a point whose distance from (—2,0) is % times its distance from the line

X = = is

(1) a parabola (2) a hyperbola (3) an ellipse (4) acircle

The values of m for which the line y = mx+2+/5 touches the hyperbola 16x> —9y> =144 are
the roots of x° —(a+b)x—4 =0, then the value of (a+b) is

(12 (2) 4 3)0 4 -2

If the coordinates at one end of a diameter of the circle x* +y* —8x—4y+c =0 are (11,2),

the coordinates of the other end are

(1) (=5,2) 2) (2,-5) 3) 5,-2) 4) (=2,5)
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SUMMARY

(1) Equation of the circle in a standard form is (x—#h)* +(y—k)’ =r>.
(1) Centre (h,k) (i1) radius ‘7’

(2) Equation of a circle in general form is x> + y* +2gx+2fy+c =0.

(i) centre (-g,—f)  (ii) radius = /g’ + f* —c
(3) The circle through the intersection of the line /x+ my +n =0 and the circle

X+ Y +2gx4+2f+c=01is X’ +y* +2gx+2fp+c+Alx+my+n)=0,1eR’.
(4) Equation of a circle with (x,,»,) and (x,,y,) as extremities of one of the diameters is

(x—x)(x—x,)+(y-y)y-r,)=0.
(5) Equation of tangent at (x,,») on circle x* + > +2gx+2fy+c=0 is

xx,+yy +8(x+x)+ f(y+y)+c=0
(6) Equation of normal at (x,,»,) oncircle x* +y” +2gx+2fy+c=0 is

v, —xy,+g(y—y)-f(x—x)=0.

Table 1
Tangent and normal

Curve Equation Equation of tangent Equation of normal
Piryt=d (1) cartesian fon2n (1) cartesian form
xx,+yy,=a xy,—yx, =0
Circle . .
(ii) parametric form (i1) parametric form
xcosO+ysinf =a xsin@ —ycos6 =0
y* =4ax @)y =2a(x+x) (1) Xy, +2y=2ay, +xy,
Parabola
(i) yt=x+at’ (i) y+xt=at +2at
2 2 W XX 2 2
Lo @) S+2r=1 @ Yy
a b @ b X M
Ellipse p 0
... XCOS sin
(if) P gy Y g
b cosf sin6
2 2 2 2
XY _ P P Nax by 5 .,
~ b2_1 (1) AR (i) " + - +b
Hyperbola 0 viand
... Xsec an
(i) A W 1 L A L
a b secf tan6
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Table 2
Condition for the sine y =mx +c to be a tangent to the Conics

Conic Equation Con:ial:g:nio be Point of contact Equation of tangent
_ ¥+y'=a | =a’(1+m’) [ Fam £EC) ) y =mx 1+ m?
frele \/l+m2 \/l+m2
2
=l c=2 iZ_a —mx+ 2
Parabola m (m2 ? Y m
x_2+y_2=1 ¢t =a'm’ +b’ —a'm b* y=mxtNa’m’ +b’
Ellipse at  b? e @
Xy’ ¢ =a’m’ -b’ —-a’m —b’ y=mx+tNa'm’ —b’
Hyperbola — =1 T
a b c c
Table 3
Parametric forms
Conic Param.etric Parameter Range of Any point on the
equations parameter conic
) x=acos6 ‘0’ or
Circle 0 0<60<2n
y=asinf (acosB,asinf)
X= atz “t’or
Parabola t —00 <t <0 ,
y=2at (at”,2at)
) x=acosf ‘0’ or
Ellipse 0 0<6<2n
y=>bsinf (acos0,bsinB)
x=asecH —1<0<r ‘0’ or
Hyperbola 0 T
y=bhtanf except 6 =i5 (asecO,btan0)

Identifying the conic from the general equation of conic Ax” + Bxy+Cy’ + Dx+ Ey+F =0

The graph of the second degree equation is one of a circle, parabola, an ellipse, a hyperbola, a

point, an empty set, a single line or a pair of lines. When,

(1) A=C=1,B=0,D=-2h, E=-2k, F=h +k*—7r*

(x—h)* +(y—k)* =r*, which is a circle.

‘ ‘ Chapter 5 Analytical Geometry.indd 219
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(2) B=0 andeither 4 or C =0, the general equation yields a parabola under study, at this level.
(3) A= C and 4 and C are of the same sign the general equation yields an ellipse.

(4) A=C and A4 and C are of opposite signs the general equation yields a hyperbola

(5) A=C and B=D =E = F =0, the general equation yields a pointx’ + y* =0.

(6) A=C=F and B=D =E =0, the general equation yields an empty set x> +y° +1=0, as

there is no real solution.

(7) A=0 or C=0 and others are zeros, the general equation yield coordinate axes.

(8) A =-C and rests are zero, the general equation yields a pair of lines x* — y*> =0.

T (R
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Applications of Vector Algebra

“Mathematics is the science of the connection of magnitudes.
Magnitude is anything that can be put equal or unequal to another thing.
Two things are equal when in every assertion each may be replaced by the other.”

A e — Hermann Giinther Grassmann

5 -
BFXETD

6.1 Introduction

We are familiar with the concept of vectors, (vectus in Latin means “to
carry”) from our XI standard text book. Further the modern version of Theory
of Vectors arises from the ideas of Wessel(1745-1818) and Argand (1768-1822)
when they attempt to describe the complex numbers geometrically as a directed
line segment in a coordinate plane. We have seen that a vector has magnitude
and direction and two vectors with same magnitude and direction regardless
of positions of their initial points are always equal.

Josiah Williard Gibbs

We also have studied addition of two vectors, scalar multiplication (1839 - 1903)

of vectors, dot product, and cross product by denoting an arbitrary vector by

the notation @ or ai +a,;+ a3l€ . To understand the direction and magnitude of a given vector and
all other concepts with a little more rigor, we shall recall the geometric introduction of vectors, which
will be useful to discuss the equations of straight lines and planes. Great mathematicians Grassmann,
Hamilton, Clifford and Gibbs were pioneers to introduce the dot and cross products of vectors.

The vector algebra has a few direct applications in physics and it has a lot of applications along
with vector calculus in physics, engineering, and medicine. Some of them are mentioned below.

* To calculate the volume of a parallelepiped, the scalar triple product is used.

* To find the work done and torque in mechanics, the dot and cross products are respectiveluy used.

* To introduce curl and divergence of vectors, vector algebra is used along with calculus. Curl
and divergence are very much used in the study of electromagnetism, hydrodynamics, blood
flow, rocket launching, and the path of a satellite.

» To calculate the distance between two aircrafts in the space and the angle between their paths,
the dot and cross products are used.

» To install the solar panels by carefully considering the tilt of the roof, and the direction of the
Sun so that it generates more solar power, a simple application of dot product of vectors is
used. One can calculate the amount of solar power generated by a solar panel by using vector
algebra.

* To measure angles and distance between the panels in the satellites, in the construction of
networks of pipes in various industries, and, in calculating angles and distance between
beams and structures in civil engineering, vector algebra is used.

221
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@ Learning Objectives

Upon completion of this chapter, students will be able to
e apply scalar and vector products of two and three vectors
e solve problems in geometry, trigonometry, and physics

e derive equations of a line in parametric, non-parametric, and cartesian forms in different
situations

e derive equations of a plane in parametric, non-parametric, and cartesian forms in different
situations

e find angle between the lines and distance between skew lines

e find the coordinates of the image of a point

6.2 Geometric introduction to vectors ;
D
A vector v is represented as a directed straight line segment in a 'C//
3-dimensional space R?, with an initial point A = (a ,d,,d )e R* and — B
1 _2’ 3 g /
an end point B = (b,,b,,b,)e R, and it is denoted by AB . The length .
ofthe line segment 4B is the magnitude of the vector v and the direction ) :0 y

from A to B is the direction of the vectorv . Hereafter, a vector will be
interchangeably denoted by v or AB . Two vectors AB andCD in R® Fig. 6.1

are said to be equal if and only if the length AB is equal to the length CD and the direction from A
to B is parallel to the direction from C to D. If AB and CD are equal, we write AB=CD,and CD

is called a translate of 4B .

It is easy to observe that every vector AB can be translated to anywhere in R’ equal to a vector

with initial point U € R* and end point ¥ € R* such that AB =UV .In particular, if O is the origin
of R then apoint Pe R® can be found such that 4B = OP . The vector OP is called the position
vector of the point P. Moreover, we observe that given any vector v, there exists a unique point
Pe R’ such that the position vector OP of P is equal to v. A vector AB is said to be the zero
vector if the initial point 4 is the same as the end point B . We use the standard notations 7, ]A,lg and
0 to denote the position vectors of the points (1,0,0),(0,1,0),(0,0,1), and (0,0,0), respectively. For
a given point (a,a,,a;)€ R, ai +a2}'+a3l€ is called the position vector of the point (a,,q,,a,),
which is the directed straight line segment with initial point (0,0,0) and end point (a,,a,,a,) . All real

numbers are called scalars.

XII - Mathematics 222
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Given a vector AB , the length of the vector is calculated by

\/(bl _a1)2 +(b, _a2)2 + (b, _a3)2 >
where 4 is (a,,a,,a;) and B is (b,b,,b;). In particular, if a vector is the position vector b of
(b,,b,,b,), then its length is /b’ +b,” +b,> . A vector having length 1 is called a unit vector. We use

the notation 7, for a unit vector. Note that 7 ,} , and k are unit vectors and 0 is the unique vector

with length 0. The direction of 0 is specified according to the context.

The addition and scalar multiplication on vectors in 3-dimensional space are defined by

a+b = (a,+b)i +(a,+b,)]+(a,+b)k.

ad = (aa)i +(aa,) ] +(oa,)k ;

where G =ai+a,j+ak, b=bi+bj+bkeR’ and e R.

To see the geometric interpretation of d+b, let @ and b, denote the position vectors of
A=(a,,a,,a,) and B=(b,b,,b,), respectively. Translate the position vector b to the vector with
initial point as 4 and end point as C=(c,c,,¢;), for a suitable (c,c,,c;)e R*. See the

Fig (6.2). Then, the position vector ¢ of the point (¢,,c,,c;) 1s equal to a +b.

The vector aa is another vector parallel to @ and its length is magnified (if & >1) or contracted
(if 0<a<l).If <0, then aa is a vector whose magnitude is || times that of g and direction
opposite to that of a. In particular, if o =-1, then ad =—d is the vector with same length and

direction opposite to that of a. See Fig. 6.3

z | W4
¢ 23
b
A -2a /_/gl
¢ /
B -
a
B a -
b o Y
o y
X
X
Fig. 6.2 Fig. 6.3
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6.3 Scalar Product and Vector Product

Next we recall the scalar product and vector product of two vectors as follows.

Definition 6.1
Given two vectors d=a,i +a2}'+a3l€ and b=bi +b2}'+b3l€ the scalar product (or dot

product) is denoted by a - b and is calculated by

i-b = ab +a,b, +ab,,

and the vector product (or cross product) is denoted by a xb , and is calculated by

i J k
axb = a, a, a,
bl b2 b3

Note
a-bisascalar, and axb is a vector.

6.3.1 Geometrical interpretation
Geometrically, if @ is an arbitrary vector and 7 is a unit vector, then g -n is the projection of

the vector a on the straight line on which 7 lies. The quantity ¢ -7 is positive if the angle between

a and n is acute, see Fig. 6.4 and negative if the angle between a and 7 is obtuse see Fig. 6.5.

A : ﬁ
a-n Negative dot product
Positive dot product
Fig. 6.4 Fig. 6.5

and so

sl

|a b | means either the length of the straight line segment obtained by projecting the vector |l; |a

If @ and b are arbitrary non-zero vectors, then |5-[; | =

along the direction of b or the length of the line segment obtained by projecting the vector |d | b

along the direction of a. We recall that a b =|a| |5 | cos@, where @ is the angle between the two

vectors @ and b . We recall that the angle between d and b is defined as the measure from a to b

in the counter clockwise direction.
The vector axb is either 0 or a vector perpendicular to the plane parallel to both @ and b

having magnitude as the area of the parallelogram formed by coterminus vectors parallel to @ and

b. 1f G and b are non-zero vectors, then the magnitude of @xb can be calculated by the formula
|5x5| =lal |5| |sin@ |, where @ is the angle between a and b.
Two vectors are said to be coterminus if they have same initial point.
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Remark

(1) An angle between two non-zero vectors @ and b is found by the following formula

6 =cos™ qa-bﬁ .
[al[b]

(2) a and b are said to be parallel if the angle between them is 0 or 7.

(3) a and b are said to be perpendicular if the angle between them is T or 3—7T
Property
(1) Let @ and b be any two nonzero vectors. Then
« G-b=0 ifand only if @ and b are perpendicular to each other.
« axb=0 ifand only if a and b are parallel to each other.
2) If E,I; , and ¢ are any three vectors and « 1is a scalar, then
Ga-b =b-a, (G+b)-¢=a-b+b-¢, (ad)-b=a(G-b)=a-(ab);
Gxb = —(bxa), (G+b)x¢=axc+bx¢, (ad)xb=a(axb)=ax(ab).

6.3.2 Application of dot and cross products in plane Trigonometry

We apply the concepts of dot and cross products of two vectors to derive a few formulae in plane
trigonometry.

Example 6.1 (Cosine formulae)
With usual notations, in any triangle 4ABC, prove the following by vector method.

(i) a*=b>+c>—2bccos A (i) b*=c*+a’*—2cacos B
(iii) ¢ =a’+b*—2abcosC
Solution

With usual notations in triangle ABC, we have BC=ad,CA=b and AB=¢ . Then | BC |=a, | CA |=b,
| AB|=c and BC+CA+A4B = 0.
So, BC =-CA-A4B.
Then applying dot product, we get
BC-BC = (—CA—AB)-(—CA—A4B)

= |BC] =|CA] +| AB|* +2CA- AB

= a’ =b*+c” +2bccos(w— A)
= a’ =b*+c’ —2bccos A.
The results in (i1) and (ii1) are proved in a similar way. [

Example 6.2
With usual notations, in any triangle ABC, prove the following by vector method.
(1) a=bcosC+ccosB (i1) b=ccosA+acosC

(i11)) c¢=acosB+bcos A

225 Applications of Vector Algebra
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Solution
With usual notations in triangle ABC, we have BC =d, CA = b, and
AB =c . Then

|BC|=a, |CA|=b, | AB|=c and BC +CA+ AB =0

So, BC=-CA— AB
Applying dot product, we get

BC-BC = —BC-CA-BC-AB
= |BC] = —|BC||CA| cos(m—C)—|BC|| AB|cos(n — B)

= a’ = abcosC +accos B
Therefore a =bcosC +ccosB. The results in (ii) and (iii) are proved in a similar way. [
Example 6.3

By vector method, prove that cos(a+ ) = cosacos f—sinasin 5.

Solution
Let G =0A and b= OB be the unit vectors and which make angles « and S, respectively, with

positive x -axis, where 4 and B are as in the Fig. 6.8. Draw AL and BM perpendicular to the

x -axis. Then |ﬁ |=| O—A|cosa =cosa, |L71 |:|m|sina =sina.

_— . A— n 1N B
So, OL=|OL|i =cosai, LA=sma(—j).
- ) ) b
Therefore, a =0A=0OL+LA=cosai—sinaj. ...(1)
N R R - B, L -
Similarly, b = cosfi+sinfj . (2) o i x
The angle between 4 and b is o+ B and so, a ,
a-b =|a| |b|cos(a+f)=cos(a+f) ...(3) -
Fig. 6.8

On the other hand, from (1) and (2)
G-b = (cosai —sinar})-(cos Bi +sin B]) = cosacos f—sinasin 3. ... (4)
From (3) and (4), we get cos(ex+ ) =cosacos f—sinasin 5. ]

Example 6.4

a b c
With usual notations, in any triangle ABC, prove by vector method that ——=———=——.
sin4d simnB sinC

Solution
With usual notations in triangle ABC, we have BC=ad,CA=b,and AB=¢ .Then|BC|=a, |CA|=b,
and | AB|=c.

Since in AABC, BC+CA+ AB =0, we have ﬁ'x(ﬁ'+a+ﬁ)=6.

Simplification gives,

BCxCA = ABxBC . ()
Similarly, since §5+@+Z§=6,W6 have B R n-C
Cix(BC+CTi+AB) =0 <
X(BC+CA+4B) = 0. Fig. 6.9
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On Simplification, we obtain BCxCA = CAXAB .. (2)
Equations (1) and (2), we get

ABxBC = CAxAB=BCxCA.
So, |Z§x§€'| = |@x2§|:|§5xa|.Then, we get
casin(r—B) = becsin(r— A)=absin(x—C).

That is, casin B = bcsin A =absin C . Dividing by abc, leads to

sind _ sinB _sinC or 4 b _ ¢
a b c sin4 sinB sinC ]
Example 6.5
Prove by vector method that sin(ex— ) =sinarcos f—cosasin .
Solution \Y 4
Let a=04 and b =OB be the unit vectors making
angles o and [ respectively, with positive x -axis, where a ~ B
A and B are as shown in the Fig. 6.10. Then, we get A - 4
a=cosai +sinaj and b= cos i +sin 3], o \B i
The angle between @ and b is @— f and, the vectors ) 0 ] L M x
b,a,k forma right-handed system. I
Hence, we get Fig. 6.10
bxa = |b||a|sin(a— Bk =sin(a— B)k . (1)
On the other hand,
i ik
bxa = cos sinf 0|=(sineacos B—cosasin Bk - (2)
cosa sina 0
Hence, equations (1) and (2), leads to
sin(fx— ) = sincos f—cosasin . ]

6.3.3 Application of dot and cross products in Geometry

Example 6.6 (Apollonius's theorem)
If D is the midpoint of the side BC of a triangle 4ABC, show by vector method that

| ABP +|AC P=2( AD | +|BD[")-
Solution

Let A be the origin, b be the position vector of B and ¢ be the position

vector of C. Now D is the midpoint of BC, and so the, position vector of D
b+¢

1S

. Therefore, we have Fig. 6.11

227 Applications of Vector Algebra

‘ ‘ Chapter 6 Vector Algebra.indd 227 @ 31-01-2020 17:50:10‘ ‘



| YT T ] ® (. T

‘ ‘ Chapter 6 Vector Algebra.indd 228 @

o —— (b+E\[(b+C) 1 -y,
\AD[=AD-AD =| =S || 225 |=—(b P +|c +2b-5). ()
2 2 4
Now, BD :E_E:b+c_5:C;b.
L — 0 == —— [(é=b \(é=b) 1,7y _p =
Then, this gives, | BD|"=BD-BD = [ =Z(]b\ +|¢|”=2b-¢) .. (2)

Now, adding (1) and (2), we get

Therefore, |AD|’ +|BD| = i(|z§|2 +|¢ [ +215-a)+i(|5|2 +|¢ [ —215-(:):%(|z§|2 +|¢1)

= |ZE|2+|E5|2:%(|ZE|2+|26|2).
Hence, |AB| +| AC| = 2(| AD|* +| BD ) -
Example 6.7

Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides
of a triangle are concurrent.

Solution

Consider a triangle ABC in which the two altitudes AD and BE intersect at
O. Let CO be produced to meet AB at F. We take O as the origin and let

574:&,51;’=5 and OC =¢ .

Since AD is perpendicular to BC, we have O4 is perpendicular to BC, and hence we get
OA-BC =0. That s, Zi-(E—E):O, which means

i-é—idab =0

. (1)

Similarly, since BE is perpendicular to CA ,we have OB is perpendicular to CA , and hence we

get OB-CA=0. That 18, 5-(&—5) =0, which means,

a-b-b-¢ =0. - (2)
Adding equations (1) and (2), gives @-¢—b-¢ =0.Thatis, ¢-(a—b)=0.
That is, OC-BA=0. Therefore, BA is perpendicular to OC which implies that CF is

perpendicular to AB . Hence, the perpendicular drawn from C to the side 4B passes through O.

Thus, the altitudes are concurrent. ]

Example 6.8
In triangle ABC, the points D, E, F' are the midpoints of the sides BC,CA,and AB respectively.
. . 1
Using vector method, show that the area of ADEF' is equal to 7 (area of AABC).
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Solution A
In triangle ABC, consider A as the origin. Then the position vectors of

D,E,F are given by AB+AC,AC 48

respectively. Since |ZZ§’XZE| isthe F E

b

2 2
area of the parallelogram formed by the two vectors 4B, AC as adjacent sides, the
area of AABC is 1 ] EXRW Similarly, considering ADEF , we have B D c
2 | Fig. 6.13
the area of ADEF = ElDE XDF |
~ (A~ 4D)x(4F - AD)
1|4B _AC
= —|—X—-
202 2
- 11 | ABx AC |
4 (2
= ! (the area of AABC).
4 ]
6.3.4 Application of dot and cross product in Physics
I Definition 6.2
® If d is the displacement vector of a particle moved from a point to another point after applying ®

a constant force F on the particle, then the work done by the force on the particle is w=F - d. |

b 4

- - -

Fig. 6.14

ol

If the force has an acute angle, perpendicular angle, and an obtuse angle, the work done by the
force is positive, zero, and negative respectively.

Example 6.9
A particle acted upon by constant forces 2/ +5/ + 6k and —i — 2] —k is displaced from the point

(4,-3,-2) to the point (6,1,—3). Find the total work done by the forces.

Solution

Resultant of the given forces is F = (2i +5 + 613) F(—i—2]- lg) =i+3/+ 5k .

Let 4 and B be the points (4,-3,-2) and (6,1,—3) respectively. Then the displacement vector
of the particle is d = AB=0B—0A=(6i + j —3k)—(4i =3 —2k)=2i +4] —k.

Therefore the work done w=F-d = (i+3]+ 513) (i +4)— lg) =9 units. -

229 Applications of Vector Algebra
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Example 6.10
A particle is acted upon by the forces 3i —2j+2k and 2i + j—k is displaced from the point

(1,3,-1) to the point (4,—1,4) . If the work done by the forces is 16 units, find the value of 4.
Solution
Resultant of the given forces is F = (31 -2/ + 2/€) +(Qi+ - /é) =5i—7 +k.
The displacement of the particle is given by
d=(4 -]+ k)~ +3]—k)= (31 —4] +(A+1k).

As the work done by the forces is 16 units, we have

F-d=16. i
Thatis, (51— j+k)- (i -4 +(A+1)k=16= 1+20=16.
So, A=—4.
IDeﬁnition 6.3

If a force F is applied on a particle at a point with position vector 7, then the torque or

moment on the particle is given by 7 =7 x F . The torque is also called the rotational force. |

Merry-go-roun;i
Fig. 6.15
Example 6.11
Find the magnitude and the direction cosines of the torque about the point (2,0,—1) of a force

2+ —k, whose line of action passes through the origin.

Solution - A (201
Let 4 be the point (2,0,—1) . Then the position vector of 4 is O4=2i —k (20-1)
and therefore 7 = A0 =-2 +k . 7

Then the given force is F =2i + J —k. So, the torque is

o n 0 F
R R Fig. 6.15
=rxF=|-2 0 1 |=--2k.
2 1 -1
The magnitude of the torque =i —2k |:\/§ and the direction cosines of the torque are
o2
NSRS
|
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EXERCISE 6.1

. Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of

a chord, then the line is perpendicular to the chord.

. Prove by vector method that the median to the base of an isosceles triangle is perpendicular

to the base.

. Prove by vector method that an angle in a semi-circle is a right angle.

. Prove by vector method that the diagonals of a rhombus bisect each other at right angles.

5. Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a

10.
I1.

12.

13.

14.

rectangle.

. Prove by vector method that the area of the quadrilateral 4ABCD having diagonals AC and

BD is %|A_éx§5|.

. Prove by vector method that the parallelograms on the same base and between the same

parallels are equal in area.

. If G is the centroid of a AABC, prove that

(area of AGAB) = (area of AGBC) = (area of AGCA) =% (area of A4ABC).

. Using vector method, prove that cos(ax— ) =cos cos f+sinasin 5.

Prove by vector method that sin(er+ ) =sin cos S +cosasin 3,

A particle acted on by constant forces 8i +2 ] —6k and 6i + 2 - 2k is displaced from the
point (1,2,3) to the point (5,4,1) . Find the total work done by the forces.

Forces of magnitudes 5J2 and 1042 units acting in the directions 37 +4;+ 5k and
10 +6 — 8k, respectively, act on a particle which is displaced from the point with position
vector 4i —3 ] — 2k to the point with position vector 6i + j — 3k .Find the work done by the

forces.

Find the magnitude and direction cosines of the torque of a force represented by 3i +4 / — 5k
about the point with position vector 2i —3j + 4k acting through a point whose position vector
is 47 +2] -3k .

Find the torque of the resultant of the three forces represented by —3i + 6 — 3k , 4i =10} +12k
and 47 +7 ] acting at the point with position vector 87 —6 j — 4k , about the point with position

vector 187 +3 -9k -

6.4 Scalar triple product

[ Definition 6.4

For a given set of three vectors d,b, and ¢, the scalar (axb)-¢ is called a scalar triple

product of a,b,c. |

Remark

d-b is ascalar and so (a@-b)xc¢ has no meaning.
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Note
Given any three vectors d,b and ¢, the following are scalar triple products:

(@xb)-¢, (bx&)-d, (Exad)-b, a-(bx&), b-(éxa), ¢ (axb),
(bxa)-¢, (¢xb)-a, (@xc)-b, a-(¢xb), b-(axc), ¢-(bxa)
Geometrical interpretation of scalar triple product
Geometrically, the absolute value of the scalar triple product (@xb)-¢ is the volume of the
parallelepiped formed by using the three vectors d,b, and ¢ as co-terminus edges. Indeed, the
magnitude of the vector (a xb) is the area of the parallelogram formed by using a and b ;and the
direction of the vector (axb) is perpendicular to the plane parallel to both @ and b .
Therefore, | (@xb)-¢ | is |axb ||¢||cosB|, Gxb

where @ is the angle between axb and ¢ .From

Fig. 6.17, we observe that |c| |cos@| is the

height of the parallelepiped formed by using the 4 ¢
three vectors as adjacent vectors. Thus, | (a X b )-C | €l cos 010 L
is the volume of the parallelepiped. b
The following theorem 1is useful for Lo G >
computing scalar triple products. Fig. 6.17

/Theorem 6.1

If = ai+a,j+ak, b=bi+b,j+bk and ¢ =ci+c,j+ck,then
@ ~ a a, a @
(@axb)-¢ = |b, b, b,]|.
\_ G 6 G )
Proof
By definition, we have
i ]k
(@xb)-¢ = |a, a, a,|-C
bl b2 b3

= _(a2b3 —ab))i —(ab,—ab) ]+ (ab, —a,b, )l€:| (ci+c, )+ 0313)

= (a,b,—a;b,)c, +(ash, —aby)c, +(a,b, —a,b)c, u
a a a4

=|b b, b
G G G

which completes the proof of the theorem.

6.4.1 Properties of the scalar triple product

Theorem 6.2
For any three vectors a,b, and ¢, (axb)-¢ =a-(bxc).
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Let a = aji+a,j+ak, b=bi+b,j+bk and ¢ =cji +c,j+ck.
b b, b, a a, a
Then, d-(bx¢) = (bxé)-d=|¢, ¢, ¢|=—|¢, ¢ ¢, by R &R,
a 4a, a b b, b,
al aZ a3
=|b b, b|,by R, &R,
Cl CZ c3
= (axb)-c.
Hence the theorem is proved.
Note u

By Theorem 6.2, it follows that, in a scalar triple product, dot and cross can be interchanged
without altering the order of occurrences of the vectors, by placing the parentheses in such a way
that dot lies outside the parentheses, and cross lies between the vectors inside the parentheses. For

instance, we have

(axb)-¢ =a-(bxZ), since dot and cross can be interchanged.

— (bx¢)-a, since dot product is commutative.
—b- (¢ xa), since dot and cross can be interchanged
— (¢xa)-b , since dot product is commutative
= ¢-(dx b ) » since dot and cross can be interchanged
Notation
For any three vectors @,b and €, the scalar triple product (dx b)-¢ is denoted by [a,b,¢].
[Zz,l; ,C] 1is read as box a,b,¢ . For this reason and also because the absolute value of a scalar
triple product represents the volume of a box (rectangular parallelepiped),a scalar triple product is
also called a box product.
Note

(1) [@,b,¢] = (axb)-¢=ad-(bxZ)=(bx¢)-a=b-(¢xa)=[b,¢,ad]

[b,¢,d] = (bXZ)-a=b-(¢xd)=(¢xa)-b=¢c-(axb)=[¢,a,b].
In other words, [Ei,l;,(?] = [E,E,Ez] = [5,&,5] ; that is, if the three vectors are permuted in

the same cyclic order, the value of the scalar triple product remains the same.

(2) If any two vectors are interchanged in their position in a scalar triple product, then the

value of the scalar triple product is (—1) times the original value. More explicitly,

[a.b,¢] = [b,¢,d]=[¢,d,b]=~{d,¢,b]=~[¢,b,d]={b,d,c].
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Theorem 6.3
The scalar triple product preserves addition and scalar multiplication. That is,
[(@+b),é,d] = [a,¢,d]+[b,¢,d];
[Aa,b,é] = Ala,b,¢],VAie R
[G,(b+¢),d] = [a,b,d]+][a,c,d];
[a,Ab,é] = Ala,b,¢],Vie R
[G@,b,(@+d)] = [d,b,¢]+[d,b,d];
[a,b,A¢] = Ala,b,¢],VAeR.

Proof

Using the properties of scalar product and vector product, we get
[(G+b),é,d] = (G+b)x¢)-d
= (Gx¢+bxc)-d
= (Gx¢)-d+(bxc)-d
= [a,¢,d]+[b,¢.,d]
[Ad,b,¢] = (Ad)xb)-¢ =(AUaxb))-¢ = A(axb)-¢)=Aa,b,c].

Using the first statement of this result, we get the following.

[(b+¢),d,d]=[b,d,ad]+[¢,d,a]
[@,b,d]+[ad,c,d]
[G,Ab,C] = [Ab,¢,d]=A[b,¢,d]=A[a,b,c].
Similarly, the remaining equalities are proved. [ |

[d,(b+¢),d]

We have studied about coplanar vectors in XI standard as three nonzero vectors of which, one
can be expressed as a linear combination of the other two. Now we use scalar triple product for the
characterisation of coplanar vectors.

Theorem 6.4

The scalar triple product of three non-zero vectors is zero if, and only if, the three vectors are
coplanar.

Proof

Let Zz,l;,g be any three non-zero vectors. Then,

(ZZXB)E =0 & cis perpendicular to axb

lies in the plane which is parallel to both a and b

c lies
a,b,c

are coplanar.

Theorem 6.5

Three vectors Zz,l;,g are coplanar if, and only if, there exist scalars r,s,e R such that

atleast one of them is non-zero and ra+sb+tc=0.
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Proof

Let ;z:ali+a2j+a3k, I;:b1i+b2j+b3k, Ezclz'+czj+c3k.Then, we have

a a, da,

Zz,Z;,E are coplanar < [ZI,Z;,E] =0 < |b b, b|=0

< there exist scalars r,s,7e R ,

atleast one of them non-zero such that

ar+a,s+ait =0, br+b,s+bit =0, c;r+c,s+ct =0

< there exist scalars r,s,7e R ,

atleast one of them non-zero such that ra+sb+tc=0.

-

Theorem 6.6

q= xZZl+y2l;+zzg,and, r= x321+y35+z32’, then
XN g
[p,q,r] =x, ¥, 2z, [a,b,c].
® \ X3V 4

If a,b,c¢ and p,Z],; are any two systems of three vectors, and if ; = xlc; + yll; + ZIZ‘,

Note

By theorem 6.6, if ZZ,B,E are non-coplanar and
XN g
X, ¥V, z,|#0,

Xy Yy Zy

then the three vectors p = xa+yb+zc, q=x,a+y,b+z,c,and, r =xa+y,b+z,c are also

non-coplanar.

Example 6.12

If G=-3i—j+5k,b=i-2j+k,¢=4]-5k,find G- (bx7).

Solution: By the defination of scalar triple product of three vectors,

3 -1 5
i (bxc) = -2 1 |=-3.
0 4 -5
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Example 6.13

Find the volume of the parallelepiped whose coterminus edges are given by the vectors
2i—3j+4k,i+2j—k and 37— j+2k.
Solution

We know that the volume of the parallelepiped whose coterminus edges are a ,b,C is given by
[d@,b,¢]|. Here, G=2i —3j+4k,b=i+2j—k, ¢ =31 — j+2k.

2 -3 4
Since [d@,b,¢]=|1 2 —1|=-7, the volume of the parallelepiped is |—7|=7 cubic units.
3 -1 2
Example 6.14 "

Show that the vectors i +2 — 3k, 21 —j+ 2k and 3i + J —k are coplanar.

Solution
Here, Ez:f+2}'—31€, I;=Zf—j+2l€, 5:3{+j_]€

1 2 -3
We know that @,b,¢ are coplanar if and only if [@,b,¢]=0.Now, [a,b,é]=|2 -1 2 |=0.
31 -1
Therefore, the three given vectors are coplanar.
|
Example 6.15
If 21—+ 3k, 3i + 27+ k,i+ mj’+4l€ are coplanar, find the value of m .
Solution
2 -1 3
Since the given three vectors are coplanar, we have |3 2 1|=0=>m=-3.
I m 4
Example 6.16 u

Show that the four points (6,—7,0), (16,—19,—4), (0,3,-6), (2,-5,10) lie on a same plane.

Solution
Let A4=(6,-7,0), B=(16,-19,-4), C =(0,3,-6), D =(2,-5,10). To show that the four points

A,B,C,D lie on a plane, we have to prove that the three vectors ZE, A_é, AD are coplanar.
Now, AB = OB—-0A4=(16i —19] —4k)—(6i =7])=10i =12 ] — 4k

AC = OC—0A=—-6i +10]—6k and AD=0D—0A=—-4i +2j+10k.

10 -12 -4
We have  [4B,AC,AD] =|-6 10 —6|=0.
4 2 10

Therefore, the three vectors ZE’, Z@,Zf) are coplanar and hence the four points A4, B,C, and

D lie on a plane.
|

XII - Mathematics 236

| YT T ] ® (. T

‘ ‘ Chapter 6 Vector Algebra.indd 236 @ 31-01-2020 17:50:42‘ ‘



Example 6.17

If the vectors ﬁ,l; ,C are coplanar, then prove that the vectors a + b , b+¢ ,C +a are also coplanar.
Solution

Since the vectors a,b,¢ are coplanar, we have [a, b, ¢]=0. Using the properties of the scalar

triple product, we get

Solution
Using theorem 6.6, we get
1 0 1
[G+¢,a+b,a+b+c] = |1 1 0|[d,b,¢]
1 11

EXERCISE 6.2

1. Ifa=i-2j+3k b=2i+ -2k ¢=3i+2j+k, find @-(bX7).

2. Find the volume of the parallelepiped whose coterminous edges are represented by the vectors
—6i +14j+10k, 147 —10j—6k and 2 +4] —2k .

3. The volume of the parallelepiped whose coterminus edges are 77 + Aj—3k, i +2] —k,
—3{ +7+5k is 90 cubic units. Find the value of A .

4.1f a,b,¢ are three non-coplanar vectors represented by concurrent edges of a parallelepiped

of volume 4 cubic units, find the value of (G+b)-(bx¢)+(b+¢)-(¢Xa)+ (¢ +a)-(axb).

5. Find the altitude of a parallelepiped determined by the vectors @ = —2i + 5/ + 3k, b=1i+ 3j— 2k
and ¢ =-3i +j+ 4k if the base is taken as the parallelogram determined by b and ¢.

6. Determine whether the three vectors 2i +3/ + k,i- 27+ 2k and 37 + J+ 3k are coplanar.

7. Letd=i+j+k b=i and ¢=ci+c,j+ck.If ¢,=1and ¢, =2, find ¢, such that ,5 and

¢ are coplanar.
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8.If Gd=i—k,b=xi+j+(1-x)k, ¢ =yi +x]+(1+x—y)k, show that [d,b,¢] depends on
neither x nor y.

9. If the vectors ai + aj’+cl€, i+k and cf +¢ +bk are coplanar, prove that ¢ is the geometric

mean of @ and b.

10. Let @,b,¢ be three non-zero vectors such that ¢ is a unit vector perpendicular to both a and b.

If the angle between a and b is %, show that [5,5,5]2 =%| al |l; .

6.5 Vector triple product

Definition 6.5

For a given set of three vectors a, b ,C , the vector g x ([; x¢) 1s called a vector triple product.

Note
Given any three vectors d,b,c the following are vector triple products :

(Gxb)xC, (bxC)xa, (Exa)xb, cx(axb),ax(bxc), bx(¢xa)

Using the well known properties of the vector product, we get the following theorem.

fTheorem 6.7 h

The vector triple product satisfies the following properties.

(1) (@, +3,)X(bXC) = G x(bx&)+ad,x(bx¢), (Ad)x(bx&) = A(@x(bx?)), AR

Q) ax((b,+b,)X¢) = ax(bx&)+ax(h,xc), ax(Ab)x&)=Aax(bx¢c)), AeR
e ax(bX(C,+¢,)) = ax(bx&)+ax(bxdc,), ax(bx(Aé)=Max(bxc)), LeR )
Remark

Vector triple product is not associative. This means that a X(bx¢)# (axb )x¢, for some

vectors a,b,c .

Justification
Wetake @ =i, b=i,¢=.Then, ax(bxé)=ix(ixj)=ixk=—] but (ixi)xj=0x]=0.

Therefore, ax(bx¢)# (axb)xc.

The following theorem gives a simple formula to evaluate the vector triple product.

Theorem 6.8 (Vector Triple product expansion)
For any three vectors d,b,¢ we have ax(bxc)=(d-¢)b—(a-b)c.

Proof
Let us choose the coordinate axes as follows :

Let x -axis be chosen along the line of action of a, y -axis be chosen in the plane passing through
a and parallel to b, and z -axis be chosen perpendicular to the plane containing a and b . Then, we

have
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A

a = ai

Sy
[

= bi+h,j

¢f +c,) ek
Now, dx(bxd)=aix|b b, 0
o ¢ G
= a,i X (bzc3f —beyj+ (b, —bzcl)lg)
= —alblc3l€ +a, (bzc1 — blcz)]' .. (1)
(3.5)5—(5.5)5 =ac, x(bf%—bj) —ab, (clf +e,) —I—c31€)

= a, (b,c, —byc, )j - alblc3l€ .. (2)

From equations (1) and (2), we get

ax(bxc) = (@-¢)b—(a-b)¢

|
Note - - -
(1) ax(bxc)=ab+pc,where a =a-c¢ and f=—(a-b), and so it lies in the plane parallel
to b and C.
® (2) We also note that ®

(Gxb)xé = —¢x(axb)
(@ -b)da—(¢-a)b]
(G-é)b—(b-ca

Therefore, (ax b )x ¢ lies in the plane parallel to @ and b.

3) In (axl; )x ¢, consider the vectors inside the brackets, call b as the middle vector and
d as the non-middle vector. Similarly, in d@x (b x¢), b is the middle vector and ¢ is the
non-middle vector. Then we observe that a vector triple product of these vectors is equal to

A (middle vector) —u (non-middle vector)
where A is the dot product of the vectors other than the middle vector and x is the dot
product of the vectors other than the non-middle vector.

6.6 Jacobi’s Identity and Lagrange’s Identity

[Theorem 6.9 (Jacobi’s identity) J

For any three vectors a,b,c, we have ﬁx(5x5)+5x(5xa)+5x(&x5)=6.

Proof
Using vector triple product expansion, we have
ax(bxc) =(a-é)b—(a-b)é
bx(éxa) =(b-a)c—(b-é)a

239 Applications of Vector Algebra

‘ ‘ Chapter 6 Vector Algebra.indd 239 @ 31-01-2020 17:51:06‘ ‘



éx(axb) =(¢-bya—(¢-a)b.

Adding the above equations and using the scalar product of two vectors is commutative, we get

ax(bx)+bx(¢xa)+cx(axb)=0. m
Theorem 6.10 (Lagrange’s identity)
L . . la-e a-d
For any four vectors a,b,c,d, we have (axb)-(¢cxd)= Cj ¢ cj ﬁ‘ .
b-¢ b-d

Proof
Since dot and cross can be interchanged in a scalar product, we get

(Gxb)-(¢xd) = a-(bx(cxd))

a- ((5 -d )¢ — - E)a7 ) (by vector triple product expansion)

= (@-&)b-d)—(a-d)b-¢)
B ‘ a-¢ a-d
b-¢ b-d -
Example 6.19 o -
Prove that [@xb, bx¢, ¢xad]=[d,b,c] .
Solution
® Using the definition of the scalar triple product, we get @
[axb, bxC,Exad]= (axb)-[(bxE)x(¢Xa)]- (1)
By treating (b x¢)as the first vector in the vector triple product, we find
(bxZ)x(Exa) = (hx&)-a)é —((bx¢)-é)d=[a,b,c]¢ .
Using this value in (1), we get
[axb,bx¢,éxa) = (axb)-([a,b,¢)¢)=[a,b,c\(axb)-¢ =[a,b,c]. -

Example 6.20

Prove that (d-(bX¢&))a = (axb)x(aXc).
Solution

Treating (ﬁxl;) as the first vector on the right hand side of the given equation and using the
vector triple product expansion, we get

(Gxb)x(axc) = (axb)-¢)a—((axb)-a)¢ =(a-(bxé))a.

Example 6.21 ~ ~

For any four vectors a, b, ¢, d, we have

Solution
Taking p = (ax b ) as a single vector and using the vector triple product expansion, we get
(Gxb)x(@xd) = px(@xd)
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Similarly, taking g = ¢ x d,we get

(ﬁxl;)x((?xcb

Example 6.22

If G=—2i+3j-2k,b=3i—j+3k, ¢

whether they are equal.

Solution
By definition, axb =
Then, (Gxb)xé =
®
bx¢é =

Next, ax(bxc)

Therefore, equations (1) and (2) lead to (5X5)><E # 5X(5><5) .

Example 6.23

Ifa—l—],b—l—] 4k, ¢ :3j—l€

= (p-d)c—(p-c)d
= ((axb)-d)¢—((axb)-é)d =[a,b,d)c —[a,b,c]d

= (Gxb)x§
= (@ §)b-(b-§)a

= [a,¢,d]b ~[b,¢,d)a

(i) (@xb)x(éxd)=[a,b,d|¢ —[d,b,cld

(i) (axb)x(¢xd)=[a,¢,d]b—[b,¢
Solution (i)
By definition,

S

INY
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=2{—5j+k, find (axb)x¢é and ax(bx¢). State
ik
2 3 2(=7-Tk .
3 -1 3
i J ok
7 0 -7|=-35-21j-35k. (D)
2 -5 1
®
ik
3 -1 3|=14i+3j-13k.
2 -5 1
ik
2 3 2 |=-331-54;-48k. . (2)
14 3 -13
m
and J=2f+5]’+l€,verifythat
,d)a
ik ij ok
1 -1 0 |=4i+4], cxd=|0 3 -1|=8-2j—6k
1 -1 -4 2 5 1
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ik
Then, (Gxb)X(Exd) = |4 4 0 |=-24i+24]—40k (1)
8 -2 —6
On the other hand, we have
[G,b,d1c —[d,b,c)d = 28(3] —k)—12(2i +5] + k) =—24i +24 ] — 40k . (2)

Therefore, from equations (1) and (2), identity (i) is verified.

The verification of identity (ii) is left as an exercise to the reader. [

EXERCISE 6.3

1.LIf G=i-2j+3k,b=2i+j-2k, =31 +2j+k, find (i) (Gxb)xc (il) ax(bx7c).
2. For any vector a, prove that fx(ﬁxf)+]‘x(ﬁx]‘)+l€x(&xl€)=251.
3. Prove that [G—b, b —¢, ¢—d]=0.
4.1 G=2i{+3]j—k, b=3i+5]+2k, ¢ =—i —2] +3k , verify that

() (@xb)xé=(d-¢&)b—(b-¢)a (i) ax(bxé)=(a-¢)b—(a-b)¢
5. G=2i+3j—k, b=—i+2j—4k, ¢=i+ j+k thenfind the value of (@xb)-(Gx¢).
6. If 5,5,6,3 are coplanar vectors, show that (5x5)x(5x3):6.

7. G=i+2]+3k,b=2i—j+k, ¢ =31 +2j+k and Gx(bx&)=ld+mb +né , find the

values of [, m,n .
A f oA . A n noboa 1a
8. If a,b,c are three unit vectors such that b and ¢ are non-parallel and ax(bxc) = Eb , find

the angle between a and ¢.

6.7 Application of Vectors to 3-Dimensional Geometry

Vectors provide an elegant approach to study straight lines and planes in three dimension. All
straight lines and planes are subsets of R’. For brevity, we shall call a straight line simply as line.
A plane is a surface which is understood as a set P of points in R’ such that , if 4, B,and C are any
three non-collinear points of P, then the line passing through any two of them is a subset of P.
Two planes are said to be intersecting if they have at least one point in common and at least one
point which lies on one plane but not on the other. Two planes are said to be coincident if they have
exactly the same points. Two planes are said to be parallel but not coincident if they have no point in
common. Similarly, a straight line can be understood as the set of points common to two intersecting
planes. In this section, we obtain vector and Cartesian equations of straight line and plane by applying
vector methods. By a vector form of equation of a geometrical object, we mean an equation which is
satisfied by the position vector of every point of the object. The equation may be a vector equation or

a scalar equation.
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6.7.1 Different forms of equation of a straight line

A straight line can be uniquely fixed if

* apoint on the straight line and the direction of the straight line are given

* two points on the straight line are given

We find equations of a straight line in vector and Cartesian form. To find the equation of a straight line
in vector form, an arbitrary point P with position vector 7 on the straight line is taken and a relation
satisfied by 7 is obtained by using the given conditions. This relation is called the vector equation of the
straight line. A vector equation of a straight line may or may not involve parameters. If a vector equation
involves parameters, then it is called a vector equation in parametric form. If no parameter is involved,
then the equation is called a vector equation in non — parametric form.

6.7.2 A point on the straight line and the direction of the straight line
are given

(a) Parametric form of vector equation

Theorem 6.11
The vector equation of a straight line passing through a fixed point with position vector @ and

parallel to a given vector b is 7 =d+tbh, where re R .

Proof B

If a is the position vector of a given point 4 and 7 is the 4 \\

position vector of an arbitrary point P on the straight line, then P
AP=F—-a. -

Since AP is parallel to b , we have :

F—d=1th,teR (D) 0 y

or 7 =a+th,teR . (2)

This is the vector equation of the straight line in parametric form. Fig. 6.18

Remark
The position vector of any point on the line is taken as a +b .

(b) Non-parametric form of vector equation
Since AP is parallel to b, we have APxb =0

That is, (7 —a)xb =0.
This is known as the vector equation of the straight line in non-parametric form.

(c¢) Cartesian equation
Suppose Pis (x,1,z),Ais (x,¥,,2) and b =bi +b, ] +b,k . Then, substituting 7 = xi + yj + zk ,

a= xlf + ylj' + zllé in (1) and comparing the coefficients of i ,}',l€ , we get
x—x =th,y—y =tb,,z—z =1tb, .. (4
Conventionally (4) can be written as

X=X - z—z
L _ YT 1 .. (5)

b b, b,
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which are called the Cartesian equations or symmetric equations of a straight line passing
through the point (x,,y,,z,) and parallel to a vector with direction ratios b,,b,,b;.

Remark
(1) Every point on the line (5) is of the form (x, +b,,y, +b,,z, +tb,), where te R.

(i1) Since the direction cosines of a line are proportional to direction ratios of the line, if /,m,n

are the direction cosines of the line, then the Cartesian equations of the line are

(i) In (5), if any one or two of b,,b,,b, are zero, it does not mean that we are dividing by zero. But

it means that the corresponding numerator is zero. For instance, If b, # 0, b, # 0 and b, =0 , then

Y0 VTN 27 A ghould be written as =2 A
b b, 0 b b,

(iv) We know that the direction cosines of x - axis are 1,0,0. Therefore, the equations of x -axis

,z—z,=0.

e =0 y-0_ z-0

1 0 0

or x=t,y=0,z=0, where te R.

x-0 y-0 z-0
0 1 0

and

Similarly the equations of y-axis and z-axis are given by

x—=0 y-0_ z-0
0 0

respectively.

6.7.3 Straight Line passing through two given points

(a) Parametric form of vector equation

Theorem 6.12
The parametric form of vector equation of a line passing through two given points whose

position vectors are @ and b respectively is 7 =a +t(l; —a),te R.

(b) Non-parametric form of vector equation

The above equation can be written equivalently in non-parametric form of vector equation as
(F—a)x(b—-a)=0

(¢) Cartesian form of equation 1

Suppose P is (x,y,z), 4 is (x,,),,z,) and B

is (x,,),,2,). Then substituting 7 =xi + yj +zk,
a= x1f+y1j+zll€ and b= x2f+y2j+zzl€ in

theorem 6.12 and comparing the /
coefficients of i ]A,lg , we get
x—=x =t(x,—x),y=y, =t(y,—y),z—z =1(z,- z)
and so the Cartesian equations of a line passing

through two given points (x,,,,z,) and (x,,,,2,) * Fig. 6.19
are given by
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N=X% = 5HTE

From the above equation, we observe that the direction ratios of a line passing through two
given points  (x,, 3,2, and (x,,¥,,z,) are given by x, —x,,y, —,,2z, — z,, which are also given by

any three numbers proportional to them and in particular x, —x,,y, —y,,z, —z,.
Example 6.24

A straight line passes through the point (1,2,—3) and parallel to 47 +5j—7l€. Find (i) vector

equation in parametric form (ii) vector equation in non-parametric form (iii) Cartesian equations of
the straight line.

Solution
The required line passes through (1,2,-3) . So, the position vector of the point is i +2/ — 3k .
Let a =f+2j—3l€ and b =4f+5j—7/€ . Then, we have
(1) vector equation of the required straight line in parametric form is 7 =a + th,te R.
Therefore, 7 = (i +2j—3k)+1(4i +5]—7k), te R.
(i1) vector equation of the required straight line in non-parametric form is (¥ —a) xb=0.
Therefore, (F —(i +2] - 3/€)) X(4i +5] - 719) =0.
XN _YTh _ZTh

(i11) Cartesian equations of the required line are

bl b2 b3
Here, (x,,,,z,)=(1,2,-3) and direction ratios of the required line are proportional to

x-1_ y-2 z+3

4,5,—7 . Therefore, Cartesian equations of the straight line are 5 e -

Example 6.25
The vector equation in parametric form of a line is 7 = (37 — 2 + 6k)+#(2i — j +3k) . Find (i) the

direction cosines of the straight line (ii) vector equation in non-parametric form of the line
(ii1) Cartesian equations of the line.

Solution

Comparing the given equation with equation of astraightline 7 = d +tb ,wehave d = 3i —2 ] + 6k

and b =2 — J+ 3k . Therefore,

(i) If b=hi +b2j+b3l€ , then direction ratios of the straight line are b,,b,,b,. Therefore,

direction ratios of the given straight line are proportional to 2,—1,3, and hence the direction
2 -1 3
N7AN RN
(i1) vector equation of the straight line in non-parametric form is given by (¥ —a)x b=0.
Therefore, (7 —(3i =2 +6k))x(2i — j+3k)=0.
(111) Here (x,,y,,z,) =(3,-2,6) and the direction ratios are proportional to 2,—-1,3.

cosines of the given straight line are

x=3 y+2 z-6
-1 3 |
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Example 6.26
Find the vector equation in parametric form and Cartesian equations of the line passing through
—-x—=2 y+3 2z-6

(—4,2,-3) and is parallel to the line 5 3

Solution

x+2:y+3_z—3 and comparing with -

Rewriting the given equations as =
g e gvene 4 2 32 b b b

we have b = blf + sz' + b31€ =—4i-2] +%l€ = —%(85 +4; —31:7) . Clearly, b is parallel to the vector
8i+4)— 3k . Therefore, a vector equation of the required straight line passing through the given point
(—4,2,-3) and parallel to the vector 8/ +4 ~3k in parametric form is
F= (—4i+2]-3k)+1(8 +4]-3k), te R.
Therefore, Cartesian equations of the required straight line are given by

x+4  y-2 z+3
8 4 -3 ]

Example 6.27
Find the vector equation in parametric form and Cartesian equations of a straight passing through
the points (-5,7,—4) and (13,-5,2). Find the point where the straight line crosses the xy -plane.

Solution

The straight line passes through the points (-5,7,—4) and (13,-5,2), and therefore, direction
ratios of the straight line joining these two points are 18,-12,6. That is 3,-2,1.
So, the straight line is parallel to 3/ —2j + k. Therefore,
«  Required vector equation of the straight line in parametric formis 7 = (—=5; +7 ] — 41:7) +1(3i -2)+ lg) or
F=(13] —5]+2k)+s(3 =2 +k) where s, 1€ R .

x+5 y=T7 z+4 or x=13 y+5 z-2
-2 1 3 -2 1

+ Required cartesian equations of the straight line are
An arbitrary point on the straight line is of the form
(3t—-5,-2t+7,t—4) or 3s+13,-2s-5, s+2)
Since the straight line crosses the xy -plane, the z -coordinate of the point of intersection is zero.

Therefore, we have t—4=0, that is, =4, and hence the straight line crosses the xy-plane at

(7,-1,0). [
Example 6.28
: oo x+3 y-l . :
Find the angle between the straight line = 5 =—z with coordinate axes.
Solution A
N . . . A 20425k | R A7
If b is a unit vector parallel to the given line, then b = ——————=—(2i +2j —k) . Therefore,
|20 +2j—k| 3

from the definition of direction cosines of 5 , we have
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cosoc—g cos,B—g cos _1
3: 3’ 7 33

where «, 3,y are the angles made by b with the positive x -axis, positive y -axis, and positive

z -axis, respectively. As the angle between the given straight line with the coordinate axes are same as the

angles made by b with the coordinate axes, we have & = cos™' (%j, B =cos™ (%J, y =cos ' (%lj ,

respectively. m
6.7.4 Angle between two straight lines
(a) Vector form

The acute angle between two given straight lines 7 =a+sb and ¥ =¢ + td is same as that of the

b
angle between b and d . So, cosH:M or =cos” |£) 'dq| .
[b1ld ] [b]ld]

Remark

(i) The two given lines 7 =G +sb and 7 =¢ +1d are parallel

[
-

& 0=0< cosf=1<|b-d|=|b| |d]. NCI8W

(i1) The two given lines ¥ =a +sb and 7 =¢+1d are parallel if, and only if b =Ad , for some
scalar A .

(i11) The two given lines ¥ =a +sb and F=C+td are perpendicular if, and only if b-d=0.

(b) Cartesian form

-X - z—z X=X - z—z
VTN L and 2 _ V= _ 2

b, b, b, d, d, d, ’

. o . X
If two lines are given in Cartesian form as

then the acute angle 8 between the two given lines is given by

| bldl + b2d2 +b3d3 |
b +b2+b>\d? +d)} +d}

0 =cos™

Remark

(1) The two given lines with direction ratios b,,b,,b; and d,,d,,d, are parallel if, and only if
b _b _b
dl dZ d3 '

(i1) The two given lines with direction ratios b,,b,,b, and d,,d,,d, are perpendicular if and only

if bd +b,d,+bd,=0.

(ii1) If the direction cosines of two given straight lines are /,,m,,n, and [,,m,,n,, then the angle

between the two given straight lines is cos@ =| [/, + mm, +nn, |.
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Example 6.29
Find the acute angle between the lines 7 = (i +2j+4k)+1(2i +2j+k) and the straight line
passing through the points (5,1,4) and (9,2,12).

Solution
We know that the line 7 = (i +2 + 4l€) +1(2i 42+ lg) is parallel to the vector 2 +2 +k.

Direction ratios of the straight line joining the two given points (5,1,4) and (9,2,12) are 4,1,8

and hence this line is parallel to the vector 4i + ] + 8k .

Therefore, the acute angle between the given two straight lines is

0 = cos™ %} where b =27 +2]+k and d =4i + ] +8k.
Therefore, 6 = cos™ (242 +k)-(4i + ] +8h)| =cos”' 2 : u
' 120 +2]+k | |40 + ] +8k| 3
Example 6.30
Find the acute angle between the straight lines x4 _y_ztl and xo1_y#l_z-2 and state
2 1 -2 4 —4 2
whether they are parallel or perpendicular.
Solution
Comparing the given lines with the general Cartesian equations of straight lines,

X=X Y= _Z—Z X=X V=W
= = and =
b, b, b, d, d, d,

we find (b,,0,,b,) =(2,1,-2) and (d,,d,,d,)=(4,—4,2). Therefore, the acute angle between the

Z—Z,

two straight lines is

6 = cos™

Q)@+ D4+ (=2)D)| o T
- 0)=—
221 4 (22)2 &+ (—4) +2° cos (0=

Thus the two straight lines are perpendicular.

Example 6.31
Show that the straight line passing through the points A(6,7,5) and B(8,10,6) is perpendicular

to the straight line passing through the points C(10,2,-5) and D(8,3,—4).
Solution

The straight line passing through the points A4(6,7,5) and B(8,10,6) is parallel to the vector
b=AB=0B—0A4=2i +3j‘+l€ and the straight line passing through the points C(10,2,-5) and
D(8,3,—4) is parallel to the vector d =CD=-2i +j‘+l€. Therefore, the angle between the two
straight lines is the angle between the two vectors b and d . Since

b-d=Qi+3j+k)-(=2i +]+k)=0.

the two vectors are perpendicular, and hence the two straight lines are perpendicular.
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Aliter
We find that direction ratios of the straight line joining the points A4(6,7,5) and B(8,10,6) are

(b,,b,,b;)=(2,3,1) and direction ratios of the line joining the points C(10,2,-5) and D(8,3,—4) are
d,,d,,d,)=(-2,1,1). Since bd, +b,d, +b,d, =(2)(-2)+(3)(1)+(1)(1) =0, the two straight lines are

perpendicular. [ |
Example 6.32

Show that the lines X1 = 2=y = 24 and x=3 = y=3 = 72 are parallel.

6 12 -2 3
Solution
. . ox—1 2-y z-4 . oA n
We observe that the straight line p = P = B is parallel to the vector 4i —6;+12k and
. . x=3 y=-3 5-z. 2 At ff

the straight line 5 = 3 = P is parallel to the vector —2i +3; —6k .

Since 4i —6 + 12k = (-2 +3j - 6l€) , the two vectors are parallel, and hence the two straight

lines are parallel. u

EXERCISE 6.4

1. Find the non-parametric form of vector equation and Cartesian equations of the straight line
passing through the point with position vector 4i+3j—7k and parallel to the vector

2i-6]+7k.
2. Find the parametric form of vector equation and Cartesian equations of the straight line

passing through the point (—2,3,4) and parallel to the straight line x—41 =Y ;_3 = 822 )

3. Find the points where the straight line passes through (6,7,4) and (8,4,9) cuts the xz and

vz planes.

4. Find the direction cosines of the straight line passing through the points (5,6,7) and (7,9,13).
Also, find the parametric form of vector equation and Cartesian equations of the straight line
passing through two given points.

5. Find the acute angle between the following lines.
(i) 7 =(4i — ))+1( +2]—2k), F=({ 2] +4k) +s(—i —2] +2Kk)
(ii) x+4 _ y—=17 _ z+5
3 4 5
(11) 2x=3y=-z and 6x=—y=—-4z.
6. The vertices of AABC are A(7,2,1),B(6,0,3),and C(4,2,4). Find ZABC.

Ak +1(2i + j+k).

, I

7. If the straight line joining the points (2,1,4) and (a—1,4,—1) is parallel to the line joining the
points (0,2,h—1) and (5,3,-2), find the values of a and 5.
-5 :2—y :1—2 and x:2y+l zl—z
Sm+2 5 -1 4m -3
other, find the value of m .

8. If the straight lines

are perpendicular to each

9. Show that the points (2,3,4),(—1,4,5) and (8,1,2) are collinear.
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6.7.5 Point of intersection of two straight lines

X—Xx - z—z X—X - z—z . .

If P Amb 4 L and 2oV 2 are two lines, then every point on the
a, a, a, b, b, b,

line is of the form (x, +sa,, y, +sa,,z, +sa;) and (x, +tb,,y, +1tb,,z, +1b;) respectively. If the lines

are intersecting, then there must be a common point. So, at the point of intersection, for some values

of s and ¢, we have

(x, +sa,,y, +sa,,z, +sa,) = (x, +tb,,y, +tb,,z, +tb;)

Therefore, x, +sa, = x, +tb,y,+sa, =y, +tb,,z, +sa, =z, +1b,

By solving any two of the above three equations, we obtain the values of s and 7. If s and ¢
satisfy the remaining equation, the lines are intersecting lines. Otherwise the lines are non-intersecting .
Substituting the value of s, (or by substituting the value of ¢), we get the point of intersection of two
lines.

If the equations of straight lines are given in vector form, write them in cartesian form and
proceed as above to find the point of intersection.

Example 6.33

-1 y-2 z-3 and X~
3 4 5 2

a
<
|

. . . . . x
Find the point of intersection of the lines

Solution

Every point on the line x;l = 3 = ;3 =s (say) is of the form (2s+1, 3s+2, 45+3) and

every point on the line X ; 4 = yT_l =z =t (say) is of the form (5¢+4, 2¢t+1, ¢). So, at the point of

intersection, for some values of s and ¢, we have

(2s+1,3s+2,45+3) = (5t+4,2t+1, 1)
Therefore, 2s—5¢=3,3s—2¢t=—-1 and 4s—¢=-3. Solving the first two equations we get
t=-1, s=—1.These values of s and ¢ satisfy the third equation. Therefore, the given lines intersect.

Substituting, these values of ¢ or s in the respective points, the point of intersection is (—1,—1,—-1).
|
6.7.6 Shortest distance between two straight lines

We have just explained how the point of intersection of two lines are found and we have also
studied how to determine whether the given two lines are parallel or not.

! Definition 6.6

Two lines are said to be coplanar if they lie in the same plane. |

Note
If two lines are either parallel or intersecting, then they are coplanar.

! Definition 6.7

Two lines in space are called skew lines if they are not parallel and do not intersect |
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Note
If two lines are skew lines, then they are non coplanar. /
If the lines are not parallel and intersect, the distance

between them is zero. If they are parallel and non-intersecting,

the distance is determined by the length of the line segment

perpendicular to both the parallel lines. In the same way, the

shortest distance between two skew lines is defined as the length

of the line segment perpendicular to both the skew lines. Two z

2

lines will either be parallel or skew. _
Fig. 6.20

Theorem 6.13
The shortest distance between the two parallel lines 7 =d+sb and 7 =¢ +1b is given by

=M,where 1b|=0.
|b
Proof
The given two parallel lines 7 =a+sb and ¥ =c¢ +tb are 4@)
a
denoted by L, and L, respectively. Let 4 and B be the points 17

on L, and L, whose position vectors are a and ¢ respectively.

. . ~ US
@& The two given lines are parallel to b . , G/ / d ®
Let AD be a perpendicular to the two given lines. If € is /
%

the acute angle between AB and b , then

_ |4Bxb| _|(E-ad)xb|

=— —— .. (1) ‘
|AB| [b] [c—allb] Fig. 6.21
But, from the right angle triangle 4BD,
. d d
S]l’le: — === — (2)
AB | AB| |c—al
¢ —a)xb "
From (1) and (2), we have d = ’(CU;# , where |b |=0.
Theorem 6.14
The shortest distance between the two skew lines 7 =d +sb and 7 =¢ +1d is given by
c—a)-(bxd -
5=z O] e 15xd|=0
|bxd |
Proof
The two skew lines 7 =G +sb and 7 =¢+1td are denoted by L, and L, respectively.
Let 4 and C be the points on L, and L, with position vectors a and ¢ respectively.
251 Applications of Vector Algebra
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From the given equations of skew lines, we observe that L, is bxd

parallel to the vector b and L, is parallel to the vector d.So, bxd -

is perpendicular to the lines L, and L, . c
D L
Let SD be the line segment perpendicular to both the lines L, :
and L, . Then the vector SD is perpendicular to the vectors b and d )
and therefore it is parallel to the vector bxd .
bxd . . : — — L
So, ——— 1is a unit vector in the direction of SD. Then, the S A(@) |
|bxd | — 1
shortest distance | SD | is the absolute value of the projection of AC 'b
Fig. 6.22
on SD . That 18,
= : . = . .. bxd
0 = |SD|=| AC . (Unit vector in the direction of SD)|=|(¢ — a)~m
X
0= |(c_aﬂ).(é><d)|,where |l§><c7|¢0.
|bxd | [ |
Remark
(1) It follows from theorem (6.14) that two straight lines 7 =a +sb and F=C+td intersect
@ each other (that is, coplanar) if (¢ —a)- (l; xd )=0. @
(2) If two lines YA YN _ZTE g 2R 2 YT 275 gtersect each other
bl b2 b3 dl d2 d3

(that is, coplanar), then we have
=% =N T4

b, b, b, |=0

d, d, d,
Example 6.34
Find the parametric form of vector equation of a straight line passing through the point of intersection of
the straight lines 7 = (7 +3j —k)+#(2 +3 ] +2k) and al I 2_ y;4 _Z%3 , and perpendicular to both
straight lines.
Solution

The Cartesian equations of the straight line 7 = (i +3 — l@) +1(2i 3]+ 2l€) is

x=1_ y=-3 =z+1

=s (sa
5 3 (say)
Then any point on this line is of the form (2s+1, 3543, 25 —1) . (1)
The Cartesian equation of the second line is x=2 =7 ;4 = 23 =t (say)
Then any point on this line is of the form (z+2, 2t +4,4¢-3) .. (2)
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If the given lines intersect, then there must be a common point. Therefore, for some 5,7 € R,
we have (2s+1, 3s+3, 2s—1)=(¢+2, 2t +4,4t-3).

Equating the coordinates of x,y and z we get
2s—t=1,35s—-2t=1 and s—2t=-1.
Solving the first two of the above three equations, we get s =1 and 7 =1. These values of s and
¢ satisfy the third equation. So, the lines are intersecting.

Now, using the value of s in (1) or the value of ¢ in (2), the point of intersection (3,6,1) of these

two straight lines is obtained.

If we take I;=2f+3j+2l€ and J=f+2}'+4l€,then bxd = =8§—6}’+l€ 1s a vector

—_— N o
D W o
N S )

perpendicular to both the given straight lines. Therefore, the required straight line passing through (3,6,1)
and perpendicular to both the given straight lines is the same as the straight line passing through

(3,6,1) and parallel to 8/ —6 + k. Thus, the equation of the required straight line is

F=Gi+6j+k)+m@8i—6j+k), meR. n
Example 6.35

Determine whether the pair of straight lines 7 = (2{ +6 + 312) +1(2+3)+ 4/2) ,

F=(2]- 3]2) +s(+2]+ 3]2) are parallel. Find the shortest distance between them.

Solution
Comparing the given two equations with

F=d+sb and F=¢+sd,
we have G =2{+6]+3k, b=2i +3]+4k,c=2]-3k d=i+2]+3k

Clearly, b is not a scalar multiple of d . So, the two vectors are not parallel and hence the two

lines are not parallel.
The shortest distance between the two straight lines is given by

5 [@-a)(bxd))|
|bxd |

ik
Now, bxd =2 3 4|=i-2j+k
12 3

So, (¢—ad)-(bxd) = (-2 —4]—6k)-(i—=2]+k)=0.

Therefore, the distance between the two given straight lines is zero.Thus, the given lines intersect
each other. m
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Example 6.36
Find the shortest distance between the two given straight lines 7 = (2{ +3 ] + 4I€) (=20 + ] - 2I€)

and X232 _z2+2
2 -1 2

Solution

The parametric form of vector equations of the given straight lines are

Fo= (20 +3]+4k)+1(=2i + ] - 2k)
and 7 = (31 —2k)+1(2i — j+2k)
Comparing the given two equations with 7 =a + th, F=¢+sd

we have G =2 +3]+4k, b=-2i + j—2k, ¢ =31 -2k, d =2i — j+2k .

Clearly, b is a scalar multiple of d , and hence the two straight lines are parallel. We know that

the shortest distance between two parallel straight lines is given by d = % .
ik
Now, (G-d)xb=|1 =3 —6|=12i+14j-5k
-2 1 =2
Therefore, d = |12/ TMA]_SAk' _ V365 '
| =20+ j—2k| 3 n

Example 6.37

Find the coordinate of the foot of the perpendicular drawn from the point (—1,2,3) to the straight
line 7#=(i —4}+31€)+t(2§ +3j+l€). Also, find the shortest distance from the given point to the

straight line.
Solution

Comparing the given equation 7= (i —4)+ 3l€) +1(2 +3)+ IQ) with D
F=d+th,we get a =f—4}+3l€, and b =2f+3}'+/€ . We denote the given -
point (—1,2,3) by D, and the point (1,—4,3) on the straight line by F.If F —’b—
is the foot of the perpendicular from D to the straight line, then F' is of the
form (2t+1, 3t—4,t+3) and DF =OF —OD = (2t +2)i + (3t —6) ] + 1k . F_' Line

Fig. 6.23

Since b is perpendicular to DF , we have
b-DF =0 = 2(2t+2)+33t—6)+1(1)=0 = r=1

Therefore, the coordinate of F'is (3,—1,4)
Now, the perpendicular distance from the given point to the given line is

DF = | DF |=4* +(=3)* +1*> =+/26 units. i
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EXERCISE 6.5

1. Find the parametric form of vector equation and Cartesian equations of a straight line passing
through (5,2,8) and is perpendicular to the straight lines 7 = (i + j — lg) +5(2i =2+ lg) and
F=20— ] =3k)+t( +2]+2k).

2. Show that the lines 7 =(6i + j+2k)+s(i +2]—3k) and 7 =3 +2]—2k)+t(2i +4] —5k)

are skew lines and hence find the shortest distance between them.
x—1 _ y+1 _ z—1 and x=3 _y-m
3 4 1

3. If the two lines = z intersect at a point, find the value

of m. 3 3 6 )
4. Show that the lines x; - y_1 z—1=0and = z

,¥—2 =0 intersect. Also find

the point of intersection.

5. Show that the straight lines x+1=2y=—-12z and x = y+2 =6z —6 are skew and hence find
the shortest distance between them.

6. Find the parametric form of vector equation of the straight line passing through (-1,2,1) and
parallel to the straight line 7 = (2{ +3 ] —k)+#({ —2j + k) and hence find the shortest distance
between the lines.

7. Find the foot of the perpendicular drawn from the point (5,4, 2)

+1 y-3 z-1

3 = Also, find the equation of the perpendicular.

.X
to the line

6.8 Different forms of Equation of a plane

We have already seen the notion of a plane.

I Definition 6.8

A vector which is perpendicular to a plane is called a normal to the plane.

Note
Every normal to a plane is perpendicular to every straight line lying on the plane.
A plane is uniquely fixed if any one of the following is given:
* aunit normal to the plane and the distance of the plane from the origin
* a point of the plane and a normal to the plane
* three non-collinear points of the plane

* a point of the plane and two non-parallel lines or non-parallel vectors which are
parallel to the plane

* two distinct points of the plane and a straight line or non-zero vector parallel to the
plane but not parallel to the line joining the two points.

Let us find the vector and Cartesian equations of planes using the above situations.

6.8.1 Equation of a plane when a normal to the plane and the distance of
the plane from the origin are given

(a) Vector equation of a plane in normal form

Theorem 6.15
The equation of the plane at a distance p from the origin and perpendicular to the unit normal

vector d is F-c?zp.
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Proof
Consider a plane whose perpendicular distance from the originis p .

Let A4 be the foot of the perpendicular from O to the plane. g
Let d be the unit normal vector in the direction of OA . \
<

Then OTLI:paAV.

If 7 is the position vector of an arbitrary point P on the plane,

then AP is perpendicular to OA. Fig. 6.24
Therefore, AP-OA =0 = (?—pc?)-pé’zo
A = (F—pd)-d=0
which gives r-d=p. .. (1)

The above equation is called the vector equation of the plane in normal form. n

(b) Cartesian equation of a plane in normal form

Let /,m,n be the direction cosines of d . Then we have d =1i + m} +nk.
Thus, equation (1) becomes

7-(lf+mf+nl€) =p
If P is (x,,2), then 7 = xi + yj‘+zl€
Therefore, (xi + yj+zk)-(li +mj+nk) = p or Ix+my+nz=p .. (2)
Equation (2) is called the Cartesian equation of the plane in normal form.
Remark
(1) If the plane passes through the origin, then p =0. So, the equation of the plane is

Ix+my+nz=0.

N T
(i1) If d is normal vector to the plane, then d = m is a unit normal to the plane. So, the vector
: . d - , s
equation of the plane is 7 -m=p or 7-d=gq,where g=p|d]|.Theequation 7-d =gq is

the vector equation of a plane in standard form.
Note

In the standard form 7-d = q, d need not be a unit normal and g need not be the perpendicular
distance.

6.8.2 Equation of a plane perpendicular to a vector and passing through
a given point _

n
(a) Vector form of equation L
Consider a plane passing through a point 4 with position vector a
and 7 is a normal vector to the given plane. A P
Let 7 be the position vector of an arbitrary point P on the plane. Fig. 6.25
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Then AP is perpendicular to 7.

So, AP-7i=0 which gives (F —ad)-7i=0. .. (D)
which is the vector form of the equation of a plane passing through a point with position vector a and
perpendicular to 7.

Note
(F-a)n=0 = rF-n=a-h =r-n=q,where g=a-n,
(b) Cartesian form of equation

If a,b,c are the direction ratios of 7, then we have 7 = ai +bj+cl€ . Suppose, 4 is (x,,¥,,2,)

then equation (1) becomes ((x—ux, )i +(y— b2 ) +(z— z, )12) (ai +bj + cle) =0. That is,

a(x=x)+b(y-y)+c(z-z) =0

which is the Cartesian equation of a plane, normal to a vector with direction
ratios a,b,c and passing through a given point (x,,y,,z,).

6.8.3 Intercept form of the equation of a plane

z

Let the plane 7.7 =¢q meets the coordinate axes at 4,B,C

C|©.0.0)
respectively such that the intercepts on the axes are
OA=a, OB =b, OC =c. Now position vector of the point 4 is ai . ©
~ 301
Since A lies on the given plane, we have ai-7=¢g which gives 0 B\Qﬁy
. . . @o,
Pzl Similarly, since the vectors bj and ck lie on the given plane, x,oi4/
‘L g - g L Fig. 6.26
we have j-n=- and k-n=-. Substituting 7 =xi+yj+zk in
c
_— R S q q q9\_
r-n=q,weget xi-n+yj-n+zk-n=q. So x| = [+y 5 +z| = |=¢.
a c

Dividing by ¢, we get, X +2 1 Z — 1. This is called the intercept form of equation of the plane
a b c

having intercepts @,b,c on the x, y,z axes respectively.

Theorem 6.16
The general equation ax+by +cz+d =0 of first degree in X, ),z represents a plane.

Proof
The equation ax+by+cz+d =0 can be written in the vector form as follows

(xi +yj+zk)-(ai +bj+ck)y=—d or F-ii=—d .

Since this is the vector form of the equation of a plane in standard form, the given equation
ax+by+cz+d =0 represents a plane. Here 7 = ai +bj +ck is a vector normal to the plane. u

Note
In the general equation ax+by+cz+d =0 of a plane, a,b,c are direction ratios of the normal

to the plane.
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Example 6.38

Find the vector and Cartesian form of the equations of a plane which is at a distance of 12 units
from the origin and perpendicular to 67 +2 ] — 3k .
Solution

Let d =6i+2j -3k and p=12.

If d is the unit normal vector in the direction of the vector 67 + 2j— 3k,

~d 1l A . A
then d =—=—(6i +2]-3k).
¥ 7( J—3k)

If 7 is the position vector of an arbitrary point (x, y,z) on the plane, then using 7 - d= p, the
vector equation of the plane in normal form is 7 %(65 +27 —3l€) =12.

Substituting 7 = xi + yj + zk in the above equation, we get (xi + yj + zlg) %(6? +2]— 312) =12.
Applying dot product in the above equation and simplifying, we get 6x+2y—3z =84, which is the

Cartesian equation of the required plane. [
Example 6.39

If the Cartesian equation of a plane is 3x—4y+3z =-8, find the vector equation of the plane in
the standard form.

Solution
If F=xi+y+ zk is the position vector of an arbitrary point (x, y,z) on the plane, then the given

equation can be written as (xi + yj + Z/é) (3 —4)+ 3]2) =—8 or (xi +y/ + Z/g) (=30 +4)- 3I€) =8. That
is, 7- (=31 +4) — 312) =8 which is the vector equation of the given plane in standard form. -
Example 6.40

Find the direction cosines of the normal to the plane and length of the perpendicular from the
origin to the plane 7 - (3 —4 ] + 12/3) =5.
Solution

Let d =3i —4j+12k and ¢ =5.

If d is the unit vector in the direction of the vector 37 — 47+ 12k , then d= %(31T —47+ 1212) .

Now, dividing the given equation by 13, we get
- 3 ~ 4 A 12 ~ 5
rol —i——j+—k|=—
13 137 13 13
which is the equation of the plane in the normal form 7 - d= p.

. . . ~ 1 ~ ~ ~ . .
From this equation, we infer that d = 3 (3i —4j+12k) is a unit vector normal to the plane from

the origin. Therefore, the direction cosines of d are El and the length of the perpendicular

13713713

from the origin to the plane is % .
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Example 6.41

Find the vector and Cartesian equatlons of the plane passing through the point with position
vector 4i +2] — 3k and normal to vector 27 — -Jj k.

Solution
If the position vector of the given pointis d =47 +2] — 3k and 7i=2i — J+ k , then the equation
of the plane passing through a point and normal to a vector is given by (¥ —a)-n=0 or 7-n=a-n.
Substituting & = 4i +2] — 3k and i =2i . +k in the above equation, we get
FoQi—j+k) = (4 +2]-3k)-(2i = j+k)

Thus, the required vector equation of the plane is 7-(2i — j + lg) =3.IfF=xi+y+ zk then we
get the Cartesian equation of the plane 2x—y+z =3. [

Example 6.42

A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the
coordinate axes is a constant. Show that the plane passes through a fixed point

Solution

The equation of the plane having intercepts a,b,c on the x,y,z axes respectively is

X z ) ) . . .
X+ 24221, Since the sum of the reciprocals of the intercepts on the coordinate axes is a constant,

a b ¢

we have l+l+l=k,where k 1s a constant, andwhichcanbewrittenasl l +l l +l l =1.
a b ¢ a\k ) b\k) c\k

b

This shows that the plane X4 Z +2=1 passes through the fixed point (% %
a c

kl»—t

EXERCISE 6.6

1. Find the vector equation of a plane which is at a distance of 7 units from the origin having
3,—4,5 as direction ratios of a normal to it.
2. Find the direction cosines of the normal to the plane 12x+3y—4z=65. Also, find

the non-parametric form of vector equation of a plane and the length of the perpendicular to
the plane from the origin.

3. Find the vector and Cartesian equations of the plane passmg through the point with position
vector 2i +6 + 3k and normal to the vector 7 +3 J+ 3

4. A plane passes through the point (—1,1,2) and the normal to the plane of magnitude 33
makes equal acute angles with the coordinate axes. Find the equation of the plane.

5. Find the intercepts cut off by the plane 7 -(6/ +4 ) — 3l€) =12 on the coordinate axes.

6. If a plane meets the coordinate axes at 4, B,C such that the centriod of the triangle 4BC is
the point (#,v,w), find the equation of the plane.
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6.8.4 Equation of a plane passing through three given non-collinear points
(a) Parametric form of vector equation

Theorem 6.17
If three non-collinear points with position vectors @,b,¢ are given, then the vector equation of the

plane passing through the given points in parametric form is
F=d+s(b—a)+t(@—a),where b#0,¢#0 and s, e R.

Proof Az
Consider a plane passing through three non-collinear points

A, B,C with position vectors a,b,¢ respectively. Then atleast two
of them are non-zero vectors. Let us take 5 =0 and ¢ # 0. Let 7 be
the position vector of an arbitrary point P on the plane. Take a point

D on AB (produced) such that AD is parallel to AB and DP is

parallel to AC . Therefore,
AD = s(b—-a), DP=t(¢c—a).

Now, in triangle ADP, we have * Fig. 6.27

AP = AD+DP or F—G=s(b—a)+t(¢—a),where b 20, c#0 and s, 7€ R
Thatis, 7 = a+s(b—a)+1(c—a).

This is the parametric form of vector equation of the plane passing through the given three
non-collinear points.
® P - ®

(b) Non-parametric form of vector equation

Let 4,B, and C be the three non collinear points on the plane with
position vectors a,b,¢ respectively. Then atleast two of them are
non-zero vectors. Let us take b #0 and ¢ #0. Now A4B=b—a and

AC=¢—a. The vectors (l; —a) and (¢ —a) lie on the plane. Since

<Y

&,I;,E are non-collinear, AB is not parallel to AC . Therefore,

(Z; —a)x (¢ —a) is perpendicular to the plane.

If 7 is the position vector of an arbitrary point P(x,y,z)on the
plane, then the equation of the plane passing through the point 4 with

position vector g and perpendicular to the vector (b —a)x(¢ —a) is given by
(F—ad)-(b—a)x(¢—a)=0 or [F—d,b—ad,c—ad]=0

This is the non-parametric form of vector equation of the plane passing through three
non-collinear points.

(¢) Cartesian form of equation

If (x,,y,,2),(x,,¥,,2,) and (x;, y;, z,) are the coordinates of three non-collinear points 4, B,C with
position vectors a ,b,¢ respectively and (x, y,z) is the coordinates of the point P with position vector
7, then we have a =x1f+y1j'+zll€, b =x2f+y2j'+221€, ¢ =x3f+y3}'+z3l€ and 7 =xf+yj'+zl€.
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Using these vectors, the non-parametric form of vector equation of the plane passing through the
given three non-collinear points can be equivalently written as

X-x, Y-y z-z
X=X, Y,=¥ z,-z|=0

Xy—=X Vi— ) Z37%

which is the Cartesian equation of the plane passing through three non-collinear points.

6.8.5 Equation of a plane passing through a given point and parallel to
two given non-parallel vectors.

(a) Parametric form of vector equation
Consider a plane passing through a given point 4 with position vector a and parallel to two
given non-parallel vectors b and é.If F is the position vector of an arbitrary point P on the plane,
then the vectors (7 —ﬁ),g and ¢ are coplanar. So, (¥ —a) lies in the plane containing b and ¢ . Then,
there exists scalars s, 7€ R such that 7 —a = sb +¢ which implies
F = d+sb+1C,where s, te R (D)

This is the parametric form of vector equation of the plane passing through a given point and
parallel to two given non-parallel vectors .

(b) Non-parametric form of vector equation

Equation (1) can be equivalently written as
(F—ad)-(bxZ) = 0 . (2)

which is the non-parametric form of vector equation of the plane passing through a given point and
parallel to two given non-parallel vectors .

(¢) Cartesian form of equation
IfG=xi+yj+zk, b=bi+b,j+bk, ¢=ci+c,]+ck and 7 =xi + yj + zk , then the equation
(2) is equivalent to

X=X Y=V Z—Z
b, b, b, |=0
G ) G
This is the Cartesian equation of the plane passing through a given point and parallel to two given

non-parallel vectors.

6.8.6 Equation of a plane passing through two given distinct points and
is parallel to a non-zero vector

(a) Parametric form of vector equation

The parametric form of vector equation of the plane passing through two given distinct points 4

and B with position vectors @ and b , and parallel to a non-zero vector ¢ is
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F=d+s(b—a)+tc or F=(1—s)d+sb+ic (1)
where s, te R, (l; —a) and ¢ are not parallel vectors.

(b) Non-parametric form of vector equation
Equation (1) can be written equivalently in non-parametric vector form as

(F—d)-((b—a)xc) =0 )

where (5 —a) and ¢ are not parallel vectors.

(c¢) Cartesian form of equation
If a =x1f+y1j+zll€, b =x2f+y2j+zzl€, ¢ =clf+c2]'+c3l€ #0 and F=xi+)yj+zk, then
equation (2) is equivalent to
X=X Y=y Z—Z
X=X V=¥ z,-z| =0
G ) G
This is the required Cartesian equation of the plane.
Example 6.43
Find the non-parametric form of vector equation, and Cartesian equation of the plane passing
through the point (0,1,—5) and parallel to the straight lines 7 = (i +2j—4l€)+s(2f +3}'+6/€) and
F=@-3j+5k)+ti+]—k).
Solution
We observe that the required plane is parallel to the vectors b=2i +3j+6l€, =i +j’—l€ and

passing through the point(0,1,—5) with position vector a. We observe that b is not parallel to ¢ .

Then the vector equation of the plane in non-parametric form is given by (¥ —a)- (5 xc)=0. ...(1)
i ]k
Substituting @ = J —5k and bxZ = |2 3 6 |=-9i+ 8 —k in equation (1), we get
I 1 -1

(7 —(j—=5k))- (=97 +8j—k) = 0, which implies that
7 (-9 +8j—k) =13.
IfF=xi+y+ zk is the position vector of an arbitrary point on the plane, then from the above

equation, we get the Cartesian equation of the plane as -9x+8y—z=130r 9x—-8y+z+13=0. g

Example 6.44
Find the vector parametric, vector non-parametric and Cartesian form of the equation of the plane
x=1_ 2y+1 z+1
o2

passing through the points (—1,2,0), (2,2 —1)and parallel to the straight line

Solution
The required plane is parallel to the given line and so it is parallel to the vector ¢ =i + j — k and

the plane passes through the points @ =—i +2/, b=2i+ 2] —k.
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vector equation of the plane in parametric form is 7 =g +s(l; —a )+tE , where 5, t e R
which implies that 7 = (—f+2j)+s(3z’—1€)+z(f+}—1€) ,wheres, e R.

vector equation of the plane in non-parametric form is (¥ —a)- ((l; —a)xc)=0.

A

i J k
Now,(b—a)xc=|3 0 —1|=i+2j+3k,
11 -1

we have (7 — (=i +27))-(( +2]+3k)=0 =7 (1 +2]+3k) =3

If 7=uxi+ yj’+zl€ is the position vector of an arbitrary point on the plane, then from the
above equation, we get the Cartesian equation of the plane as x+2y+3z=3. [

EXERCISE 6.7

. Find the non-parametric form of vector equation, and Cartesian equation of the plane

passing through the point (2,3,6) and parallel to the straight lines x;l =7 ;1 = ZI3

x+3 y-3 z+1
2 -5 -3

and

. Find the non-parametric form of vector equation, and Cartesian equations of the plane passing

through the points (2,2,1), (9,3,6) and perpendicular to the plane 2x+6y+6z=9.

. Find parametric form of vector equation and Cartesian equations of the plane passing through

the points (2,2,1),(1,—-2,3) and parallel to the straight line passing through the points (2, 1, —3)
and (—1,5,-8).

. Find the non-parametric form of vector equation and cartesian equation of the plane passing through

the point (1,-2,4) and perpendicular to the plane x+2y—3z=11 and parallel to the line
x+7 y+3 z

3 -1 1

. Find the parametric form of vector equation, and Cartesian equations of the plane containing

the line 7 = (i — ] + 3]2) +1(2i— ]+ 4l€) and perpendicular to plane 7-(i +2/ + /:t) =8.

. Find the parametric vector, non-parametric vector and Cartesian form of the equations of the

plane passing through the three non-collinear points (3,6,-2),(-1,-2,6), and (6, 4, -2).

. Find the non-parametric form of vector equation, and Cartesian equations of the plane

F:(6?—]‘+l€)+s(—f+2]+l€)+t(—5§—4]’—51€).

6.8.7 Condition for a line to lie in a plane
We observe that a straight line will lie in a plane if every point on the line, lie in the plane and
the normal to the plane is perpendicular to the line.

(i) If the line F=ad+th lies in the plane 77 =d ,then @-1n =d and bii=0.

(ii) If the line =1 =2~ = 272 Yieg in the plane Ax+By+Cz+D =0, then
a

b c
Ax,+ By, +Cz,+ D=0 and ad+bB+cC=0.
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Example 6.45
Verify whether the line al _43 p _74 = 2123 lies in the plane 5x—y+z=8.
Solution

Here, (x,,,,2,) =(3,4,-3) and direction ratios of the given straight line are (a,b,c)=(-4,-7,12).

Direction ratios of the normal to the given plane are (4,B,C)=(5,-11).
We observe that, the given point (x;, y,,z, ) =(3,4,-3) satisfies the given plane 5x— y+z =8

Next, ad+bB+cC=(-4)5)+(-7)(-1)+(12)(1)=-1#0. So, the normal to the plane is not
perpendicular to the line. Hence, the given line does not lie in the plane. [ |

6.8.8 Condition for coplanarity of two lines

(a) Condition in vector form

b bxd
The two given non-parallel lines F=d+sband 7 =C+1d are A@@) I
coplanar. So they lie in a single plane. Let A and C be the points whose h /
position vectors are d and ¢ . Then A and C lie on the plane. Since b c(c) =
and d are parallel to the plane, bxd is perpendicular to the plane. So /;7/
AC is perpendicular to bxd . That is, Fig. 6.30

(¢-d)-(bxd) = 0
This is the required condition for coplanarity of two lines in vector form.

(b) Condition in Cartesian form

B W S 4 W ] WP L IO S
by b, b d, d, dy

X .
Two lines are coplanar if

This is the required condition for coplanarity of two lines in Cartesian form.

6.8.9 Equation of plane containing two non-parallel coplanar lines

(a) Parametric form of vector equation

Let 7=z +sband r=c+td be two non-parallel coplanar lines. Then bxd#0.Let Pbe any

point on the plane and let % be its position vector. Then, the vectors g - ZI,B, d as well as a - E, B, d
are also coplanar. So, we get % —a=th+sd or r —c=th+sd . Hence, the vector equation in

parametric form is r=a+th+sd or r=c+th+sd .
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(b) Non-parametric form of vector equation
Let r=a+sband r=c+td be two non-parallel coplanar lines. Then bxd#0.Let Pbe any

point on the plane and let a be its position vector. Then, the vectors a - 21,13, d as well as a —-c,b,d

are also coplanar. So, we get (% — 5)(5 X 3) =0 or (;0 - E)(l; X Zl) =0. Hence, the vector equation in
non-parametric form is (; - Zz)(l; X E/) =0 or (17 —2)(5 X Zl) =0.

(C) Cartesian form of equation of plane

In Cartesian form the equation of the plane containing the two given coplanar lines

YTh _YTh _EFTA g R YTh 275
by by b d d, dy

is given by

X=X Y=V Z—%
b, b, by | =0 or

Example 6.46
Show that the lines 7 = (—f ~3j- SIQ) + S(Sf +57+ 7l€) and 7 = (Zf +47+ 6l€) +t(f +4j+ 7l€)
are coplanar. Also,find the non-parametric form of vector equation of the plane containing these lines.

Solution
Comparing the two given lines with

F=d+th,F=C+sd
we have, a = —f—3j—51€,5=35+5}+71€, E=21°+4]A'+6l€ and j=f+4j+71€

We know that the two given lines are coplanar , if (¢ —ad)- (l; xd ) =0

i ]k

Here, bxd=|3 5 7| = 7i-14j+7k and ¢—a=3i+7]+11k
1 4 7

Then, (¢-a)-(bxd) = (3i+7j+11k)-(77 -14]+7k)=0.

Therefore the two given lines are coplanar.Then we find the non parametric form of vector
equation of the plane containing the two given coplanar lines. We know that the plane containing the

two given coplanar lines is
(7-a)-(bxd) = 0
which implies that (;7 - (—f -3j- 5/;)) . (7 i—147+ 7/9) = 0. Thus, the required non-parametric

vector equation of the plane containing the two given coplanar lines is 7 - (f —2j+ lé) =0.
|
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EXERCISE 6.8

1. Show that the straight lines 7 = (5 + 7] —3k)+s(4i +4 ] —5k) and

7= (Sf +47+ SIQ) +t (7f ++ 3l€) are coplanar. Find the vector equation of the plane in which

they lie.
2. Show that the lines x—2 = y;3 = Z;4 and x—31 = y;4 =272 are coplanar. Also, find
the plane containing these lines.
-1 -2 -3 — - —
3. If the straight lines AImb YR Al — and X3 =2 22 == ! are coplanar, find the
1 2 m 1 m
distinct real values of m.
4. If the straight lines x-1 = y+l =Z and xtl = y+l =Z are coplanar, find A and equations
2 A 2 5 2 A

of the planes containing these two lines.

6.8.10 Angle between two planes

The angle between two given planes is same as the angle between their normals.

Theorem 6.18
The acute angle @ between the two planes 7 -7, = p, and 7 -#, = p, is given by

6 =cos™ |ﬁ1 ' ﬁ2|
72|,

Proof

If O is the acute angle between two planes 7 -7, = p, and 7 -1, = p, , then

0 is the acute angle between their normal vectors 7, and 7,.
) .. (1)

(1) If two planes 7 -n, = p, and 7 -7, = p, are perpendicular, then 7, -7, =0

n-n
Therefore, cosﬁz[ . 2|

Fig. 6.30 _

Remark

(ii) If the planes 7 -7, = p, and 7 -7, = p, are parallel, then 7, = A7, , where A is a scalar

(i11) Equation of a plane parallel to the plane ¥-n=p is ¥-n=k, ke R

Theorem 6.19

The acute angle @ between the planes a,x+b,y+c,z+d, =0 and

|clla2 +bb, + clcz|

\/al2 +b12 + cl2 \/az2 + b22 + c22

a,x+b,y+c,z+d, =0 is given by 8= cos™

XII - Mathematics 266

‘ ‘ Chapter 6 Vector Algebra.indd 266 @ 03-02-2020 17:33:45‘ ‘



| YT T ] ® (. T

Proof
If n, and n, are the vectors normal to the two given planes ax+by+cz+d, =0 and

a,x+b,y+c,z+d, =0 respectively. Then, 7, = ai +b, ] + cll€ and 7, =a,i +b, ]+ czl€

Therefore, using equation (1) in theorem 6.18 the acute angle @ between the planes is given by

|ala2 +b,b, + clcz|

9200871 2 2 2 2 2 2
\/a1 +b" +¢ \/a2 +b," +c, -

Remark
(1) The planes a,x+b,y+c,z+d, =0 and a,x+b,y+c,z+d, = 0are perpendicular if

aa,+bb,+cc,=0

(i1) The planes ax+by+cz+d, =0 and a,x+b,y+c,z+d, = 0are parallel if ﬂ:Z—l:&
4G b, G

(i11) Equation of a plane parallel to the plane ax+by+cz=p is ax+by+cz=k, ke R

Example 6.47
Find the acute angle between the planes 7 - (25 +27+ 21:7) =11 and 4x-2y+2z=15 .

Solution

The normal vectors of the two given planes 7 - (2f +27+ 212) =11 and 4x—-2y+2z=15 are
n, = 20+2]+ 2k and n, = 427+ 2k respectively.

If @ is the acute angle between the planes, then we have

|ﬁl.ﬁ2] . ‘(25+2j+21€).(4i—2}+2/€)‘ _1(\5)
=cos =cos | —

‘2f+2j+21€H4i—2j+2/€

6.8.11 Angle between a line and a plane

We know that the angle between a line and a plane is the

complement of the angle between the normal to the plane and
the line R

Let 7 =d+1tb be the equation of the line and 7 -7 = p be 9

the equation of the plane. We know that b is parallel to the given

|
line and 7 is normal to the given plane. If 6 is the acute angle / —

between the line and the plane, then the acute angle between 7 Fig. 6.31

cos(ﬁ—ﬁ)zsin9:| ‘ |
? |
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(-7
gl

and ax+by+cz = p are the equations of the line and

. (D)

So, the acute angle between the line and the plane is given by 6 =sin”

N_YTI _zZ74

. X —
In Cartesian form if
a, b, G

the plane, then b :alf +b1j'+cll€ and 7i=ai +b]‘+cl€. Therefore, using (1), the acute angle €

between the line and plane is given by
|aa1 +bb, + ccl|

Ja* +b +¢ \/al2 +b’ +c¢

0 =sin"

Remark
(1) If the line is perpendicular to the plane, then the line is parallel to the normal to the plane.
So, b is perpendicular to 7 . Then we have b = A7i where A€ R ,which gives - % =a
a c

(i1) If the line is parallel to the plane, then the line is perpendicular to the normal to the plane.

Therefore, b -7i = 0 = aa, +bb, +cc, =0

Example 6.48
Find the angle between the straight line 7 = (2f +37+ /é) +t (f —j+ lé) and the plane

2x—y+z=35.
Solution
a &
The angle between a line 7 =a +tb and a plane 7 -7 = p with normal 7 is § =sin™' |l;||*|
n

Here, Ezf—j’+l€and ﬁ=2f—j+l€.
i . ‘(f—}'+l€)-(2i—j+l€)‘
] |7 [P+ [2f -+

So,we get 6 =sin"'

6.8.12 Distance of a point from a plane
(a) Equation of a plane in vector form

Theorem 6.20
The perpendicular distance from a point with position vector # to the plane 7 -7 = p is given by
S lii -7 — p
il

Proof

Let 4 be the point whose position vector is # .
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Let F be the foot of the perpendicular from the point 4 to the plane A(id)
7-n = p.The line joining F' and 4 is parallel to the normal vector # and n
hence its equation is7 =u + 1 . S
But F'is the point of intersection of the line 7 =u + 1 and the
given plane 7-n = p.If 7 is the position vector of F, then 7, =u +t7 F
for some 7, € R, and 7 -7 = p .Eliminating 7, we get
- Fea=p
(i +4i)-7i = p which implies £, =2 _|;(aT ) Fig. 6.32
Now, FZ:ﬁ—(ﬁ+qﬁ)—-—qﬁ:[giﬁf—g]ﬁ
7]

5= [F|- (ﬁ'ﬁl—zv

i

The position vector of the foot F of the perpendicular AF is given by

7= u+tn or

(=] e
Q2DRZ W

R E=c o
i

(b) Equation of a plane in Cartesian form

In Caretesian formif A(x,,y,,z, ) is the given point with position vector u and ax+by+cz = p

is the Cartesian equation of the given plane, then i = x,i +y, ] + ZII€ and i =ai +bj+cl€ . Therefore,

ju-n—p|

7]

using these vectors in ¢ = , we get the perpendicular distance from a point to the plane in

Cartesian form as
_ |ax1 +by, + ¢z _p| _ |ax1 +by, + ¢z, —p|

_| Va' +b* + ¢ |_ Na>+b* +c*

)

Remark
The perpendicular distance from the origin to the plane ax+by+cz+d =0 is given by
|

Nat +b* + ¢

Example 6.49
Find the distance of a point (2,5,—3) from the plane 7 - (6f 37+ 212) =5.

S=

Solution

Comparing the given equation of the plane with 7 -7 = p, we have 7i =6/ -3 + 2.
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We know that the perpendicular distance from the given point with position vector # to the

u-n—p A A
plane7-ii = pis given by 0 =% . Therefore, substituting # =(2,5,-3)=2i +5; -3k and

=60 -3]+ 2k in the formula, we get

(2?+5}—3l€)~(6£—3}+2i€)—5

5=|ﬁ'ﬁﬁ_p|: IS = 2 units.
7| 6i —3]+2k -

Example 6.50
Find the distance of the point(5,—5,—10) from the point of intersection of a straight line passing
through the points 4(4,1,2) and B(7,5,4) with the planex—y+z=5.

Solution
The Cartesian equation of the straight line joining 4 and B is

x=4 y-1_ z=2
3 4 2
Therefore, an arbitrary point on the straight line is of the form(37+4,47+1,2¢+2). To find the

=t (say).

point of intersection of the straight line and the plane, we substitute x =3¢+4,y =4t+1,z=2¢t+2 in
x—y+z=5,and we get t =0. Therefore,the point of intersection of the straight line is (4, 1, 2). Now,
the distance between the two points (4, 1, 2) and(5,-5,—10) is

J4=5] + (145 +(2+10)" = VTS units, .

6.8.13 Distance between two parallel planes

Theorem 6.21
The distance between two parallel planes ax+by+cz+d, =0 and ax+by+cz+d, =0 is given
|d1 — d2|

Nat +b* + 2

Proof

by

Let A(x,,y,,z,) be any point on the plane ax+by+cz+d, =0, then we have
ax,+by, +cz,+d, =0= ax, +by, +cz, =—d,
The distance of the plane ax+by +cz+d, =0 from the point 4(x,,,,z,) is given by
5 — |ax1+byl+czl+dl| _ |d1—d2|
Na' +b* +c° Na' +b* +c°

Hence, the distance between two parallel planes ax+by+cz+d, =0and ax+by+cz+d, =0 is

. d —d
given by = M

Nat+b*+¢? u
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Example 6.51
Find the distance between the parallel planes x+2y—2z+1=0 and 2x+4y—-4z+5=0.
Solution

We know that the formula for the distance between two parallel planesax+by +cz+d, =0 and
|d1 —d, |

Nat+b* +¢
S

Comparing the given equations with the general equations, we get a=1,b=2,c=-2,d, =1,d, = 5

. : . 5
ax+by+cz+d,=0 is 6= . Rewrite the second equation as x+2y—22+E:0.

Substituting these values in the formula, we get the distance

)
1-2
0= |dl _d2| = ‘ 2 =— units.

- Ja? b+ \/12+22+(—22)

Example 6.52
Find the distance between the planes 7 - (Zf —j- 2k) =6 andr- (6f -3j— 6k) =27
Solution

Let i be the position vector of an arbitrary point on the plane 7 -(2i — ] — 212) =6. Then, we have
ii-(2i—j-2k)=6. (D

If & is the distance between the given planes, then & is the perpendicular distance from u to the
plane
Fo(6i-3]—6i)=27.

~

ii-(61=3] -60) 27| _[3@- (21 - j=2k))-27
J& + (=37 -6y | | 9

|ju-n—pl| (3(6)-27|

Therefore, 0 = 5 | =

1 unit. g
7]

6.8.14 Equation of line of intersection of two planes

Let 7-n = p and 7 -m = q be two non-parallel planes. We know
that 7 and m are perpendicular to the given planes respectively.

So, the line of intersection of these planes is perpendicular to both

n and m. Therefore, it is parallel to the vector nxm . Let

Axim=1i+1,]+Lk

Consider the equations of two planes a,x+by+cz=p and

a,x+b,y+c,z =¢q . The line of intersection of the two given planes

intersects atleast one of the coordinate planes. For simplicity, we
assume that the line meets the coordinate plane z =0. Substitute

Fig. 6.33

z=0 and obtain the two equations ax+by—p=0 and

a,x+b,y—q =0.Then by solving these equations, we get the values of xand y as x, and y, respectively.
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So, (x] Vi 0) is a point on the required line, which is parallel to llf + lzj + 1319 . So, the equation of the

lineis 2 =Y=N _ Z_O.
ll 12 13

6.8.15 Equation of a plane passing through the line of intersection of two
given planes

Theorem 6.22

The vector equation of a plane which passes through the line of intersection of the planes

-

F-iy=d, and -7, =d,is given by (F-7i, —d,)+A(F-i,—d,)=0, where 1 eR.

Proof 3
Consider the equation ;'5
(7 -ii, —d, )+ A(F ii,—d,) =0 . (1) i
The above equation can be simplified as “f‘
- (i, + Aii, )~ (d, + Ad,) = 0 e T

0

Put i =7, + A, d =(d, + Ad,).
Then the equation (2) becomes

Fi=d .. (3) Fio. 6 u =d,

The equation (3) represents a plane. Hence (1) represents a plane.
Let 7 be the position vector of any point on the line of intersection of the plane. Then 7 satisfies
both the equations 7 -n, =d, and 7-n, =d, . So, we have
iien, o= d, .. 4
and 7-n, = d, . (5)

By (4) and (5), 7; satisfies (1). So, any point on the line of intersection lies on the plane (1). This

proves that the plane (1) passes through the line of intersection.

The cartesian equation of a plane which passes through the line of intersection of the planes
ax+by+cz=d and a,x+b,y+c,z=d, 1s given by

(ax+by+cz—d)+A(ax+by+c,z—d,)=0 [ |

Example 6.53
Find the equation of the plane passing through the intersection of the planes 7 - (f +j+ k) +1=0

and 7-(2{ =3 +5k) = 2and the point (~1,2,1).
Solution

We know that the vector equation of a plane passing through the line of intersection of the planes
F-i =d, and 7 -7, =d, is given by (F-ii, —d, )+ A(F-1,—d,)=0

Substituting 7 =xi +yj+zk, i, =i+ j+k, i,=2i—3j+5k, d,=1,d,==2 in the above
equation, we get

(x+y+z+1)+A(2x-3y+52z-2)=0
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Since this plane passes through the point(—1,2,1), we get 4 = % , and hence the required equation

of the plane is 11x—4y+20z=1 . m
Example 6.54

Find the equation of the plane passing through the intersection of the planes 2x+3y—z+7=0
andx+ y—2z+5=0 and is perpendicular to the planex+y—-3z-5=0 .

Solution
The equation of the plane passing through the intersection of the planes 2x+3y—z+7=0and

x+y—2z+5=01is (2x+3y—z+7)+A(x+y—-2z+5)=0 or
(2+A)x+(3+A) y+(-1-24)z+(7+54)=0
since this plane is perpendicular to the given plane x+ y—3z—5=0, the normals of these two planes
are perpendicular to each other. Therefore, we have
(1)(2+4)+ (1) (3+A)+(=3)(~1-24) 2 =0
which implies that A = —1 .Thus the required equation of the plane is

(2x+3y—z+7)—(x+y—2z+5)=0=>x+2y+z+2=0. |

6.9 Image of a Point in a Plane
Let A be the given point whose position vector is # . Let 7-7n = p be the equation of the plane.

Let v be the position vector of the mirror image A" of A in the plane. Then AA' is perpendicular to

the plane. So it is parallel to 7 . Then

A4 = Aii or V—ii = Ai = V=ii+Aii (D
Let M be the middle point of 44" . Then the position vector of M is ury .But M lieson
the plane.
S Uu+vy -
0, > n=p. .. (2) ) A(i)

Sustituting (1) in (2), we get

|
S PR (L) RL L\

Therefore, the position vector of A’ A Croi= p
v
.. - 2p—(@u-n
ISv=u +% Fig. 6.35
7]
Note

The mid point of M of 4A" is the foot of the perpendicular from the point A to the plane 7 -7 = p. So
the position vector of the foot M of the perpendicular is given by .

itV _i 1(ﬁ+2[p—<ﬁ-ﬁ>ﬁJ

=—+
|7 [
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6.9.1 The coordinates of the image of a point in a plane

Let (a,,a,,a,) be the point & whose image in the plane is required. Then i = a,i +a,] +a,k .

Let ax+by+cz =d be the equation of the given plane. Writing the equation in the vector form we

get 7-7i = pwhere ii = ai +bj + ck .Then the position vector of the image is

g 2le-@m]
H;

If v=vi+v,j+v,k ,then v, =a,+2a0,v, =a,+2a0, v, =a, +2ac

where = 2|:p—(aa1 +ba, +ca3)].

a’+b’+c’
Example 6.55
Find the image of the point whose position vector is  +2 ] + 3k in the plane 7 - (f +27+ 4l€) =38 .
Solution
Here, ii=i+2]+ 3k L A=i+2]+ 4k , p =38 . Then the position vector of the image v of
AoA a 2l p—(u-n
ii =7 +2]+3F is given by soge e @m]

|7 [

2[38—((?+2}+3i€).(f+2j+41€))]
(f+2]’+4l€)-(f+2]’+4l€)

17:(5+2]'+3l€)+ f+2]‘+4l€).

That is, ¥ = (i+2j+3l€)+2[38_17 (f+2}'+4/€) =3 +6]+11F .
Therefore, the image of the point with position vector 7 +2j + 3k is 37 + 67+1 1k . m
Note

The foot of the perpendicular from the point with position vector 7 +2 ] + 3k inthe given plane is

((+2]+3k)+3i+6]+11k)

=2i+4j+7k.
2

6.10 Meeting Point of a Line and a Plane

Theorem 6.23

The position vector of the point of intersection of the straight line 7 =a +th and the plane

F-n=p is 5+(%M)5,provided bii=0.
7]

Proof
Let 7 =d+th be the equation of the given line which is not parallel to the given plane whose

equation is 7-7i=p. So, b-n=0.
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Let u be the position vector of the meeting point of the line with the plane. Then u satisfies both 7 = a + tb

and 7 -n = p for some value of 7, say ¢,.So, We get
=d+tb e A >
(1 ﬁT :x\\
- - (2) /g\

u
u-n=p
Sustituting (1) in (2), we get l_l \
(@+tb)-ii=p M
or G-+t (bii)=p L
.o F-n=p

@ A\l
or g =2=l@7) -3 .

b-n Fig. 6.36

Sustituting (3) in (1), we get

i=at m]&ﬁﬁio -

Example 6.56
Find the coordinates of the point where the straight line 7 = (2f —j+2k) +t(3f +47+ 2k)

intersects the planex—y+z-5=0.

Solution
Here, G=2i—j+2k, b=3+4)+2k.

The vector form of the given plane is F-(f—j+l€):5.Then ﬁzf—]’+l€ and p=5.

We know that the position vector of the point of intersection of the line 7 =a + tb and the plane

L __ (p=(an))- =
r-d=pisgivenby u=a+ T b, whereb-n=0.
N
Clearly, we observe that bt =0.
i S—(20-j+2k)-(i-j+k) N .
— =———————————>—=_0. Therefore,the position vector of the point of
i (3 +4j+2k)(1-]+K)

p

Now, _
b

intersection of the given line and the given plane is
7 =(2§—}+2/€)+(0)(3§+4}+2/€) =2 — j+2k
That is, the given straight line intersects the plane at the point (2,—1, 2) .

Aliter
x—=2 y+1 z-
==
We know that any point on the given straight line is of the form (3¢+2,4t—1,2t+2). If the
given line and the plane intersects, then this point lies on the given pane x—y+z—-5=0.
So, (3t+2)—(4t-1)+(2t+2)-5=0=1¢=0.
Therefore, the given line intersects the given plane at the point (2,—1,2)

. . . . . 2
The Cartesian equation of the given straight line is =t (say)

275 Applications of Vector Algebra

31-01-2020 17:53:41 ‘ ‘



| YT T ] ® (. T

EXERCISE 6.9

. Find the equation of the plane passing through the line of intersection of the planes
?-(22—7}+41€)=3 and 3x—5y+4z+11=0, and the point (-2,1,3).

2. Find the equation of the plane passing through the line of intersection of the planes

—_—

x+2y+3z=2 and x—y+z=3, and at a distance 2 from the point (3,1,-1).

N

. Find the angle between the line r:(2f—j+l€)+t(f+2j—2/€) and the plane

(O8]

F~(6z°+3]’+21€)=8

4. Find the angle between the planes 7 - (f +j- 212) =3 and 2x-2y+z=2.

e

Find the equation of the plane which passes through the point (3,4,—1)and is parallel to the
plane 2x—-3y+5z+7=0. Also, find the distance between the two planes.
6. Find the length of the perpendicular from the point (1,-2,3)to the plane x—y+z=5.

7. Find the point of intersection of the linex —1 = % =z+1 with the plane 2x—y+2z =2. Also,

find the angle between the line and the plane.
8. Find the coordinates of the foot of the perpendicular and length of the perpendicular from the
point ( 4,3,2) to the planex+2y+3z=2.

@ EXERCISE 6.10 |

Choose the correct or the most suitable answer from the given four alternatives :

1. 1f G and b are parallel vectors, then [5,6,5] is equal to

(1) 2 () -1 31 4) 0
2. If a vector & lies in the plane of S and 7, then

(1) [, B, 71= () [&,B,7]1=-1 (3) [@8,71=0 4) [&,B,71=2
3.1fda-b=b-c=¢-d= 0, then the value of [a, b ,C] 18

(1) |d| [b] || (2)§|cﬂ|b\|5| 3)1 (4) -1

4. 1f d,b,¢ are three unit vectors such that a is perpendicular to b, and is parallel to ¢ then
X(E X ) 1is equal to
(1) a @b (3) ¢ (4) 0
(b><c) b- (cxa) c- (axb)

(¢xa)- b (axb) ¢ (cxb)
(H1 (2) -1 3)2 43

5. If [d@,h,¢]=1, then the value of &

6. The volume of the parallelepiped with its edges represented by the vectors
P+, i+42], i+ ]+7k is

T T T
1)— 2) — R)W/4 4) —
( )2 (2) 3 (3) (4) 2
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10.

11.

12.

13.

14.

15.

— [ SN — 1 _ -
. If @ and b are unit vectors such that [a, b, axb]= 7 then the angle between @ and b is

T r T T
(1 o ) 7 3) 3 4) B

Ifd=i+j+k, b=i+], ¢=i and (Gxb)XZ = Ad+ ub, then the value of A+ u is

(1o @1 (3) 6 4) 3

If Zi,Z;,E are non-coplanar, non-zero vectors such that [, l;, c¢]=3,then {[EzXZ;, EXE, cxal)’
is equal to
(1) 81 2)9 (3) 27 ) (4)18

If a,E ,¢ are three non-coplanar unit vectors such that dx(l; X¢)= b+c

J2

, then the angle

between @ and b is

mZ @) %” Ok @) 7

If the volume of the parallelepiped with @xb, bx¢, ¢xa as coterminous edges is 8 cubic
units, then the volume of the parallelepiped with (a xb )X (l; XC), (I; xXc)x(¢xa) and
(cxa)x(ax 5) as coterminous edges is,

(1) 8 cubic units (2) 512 cubic units (3) 64 cubic units (4) 24 cubic units
Consider the vectors d,b,¢,d such that (Gxb)x(¢xd)=0. Let B and P, be the planes
determined by the pairs of vectors a ,b and ¢,d respectively. Then the angle between £, and
P, is

(1) 0° (2) 45° (3) 60° (4) 90°

If sz(l;XE) = (ZzXZ;)Xé, where d,b,¢ are any three vectors such that b-¢#0and a-b#0,

then @ and ¢ are

(1) perpendicular (2) parallel

(3) inclined at an angle % (4) inclined at an angle %

Ifa=2i+3] —k, b=i+ 27— Sk, ¢=3i+ 57— k, then a vector perpendicular to @ and lies

in the plane containing b and ¢ is

(1) —17i +217 97k (2) 17 +21] 123k
(3) =17 =21} +97k (4) —17i =217 -97k
- —1 2y+43 5
The angle between the lines X2 _ YT ! ,z=2and ro_ZyHS _zw is
3 —2 1 3 2
D= 2) 7 33 )5
D% @7 3 2
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16. If the line x;2 = y_sl = 222 lies in the plane x+3y—az+ =0, then (e, fB) is
(1) (-5,5) (2) (=6,7) 3) (5,-5) 4) (6,-7)
17. The angle between the line 7 = (i +2/ — 319) +1Q2+ ] - 2/€) and the plane 7-(i + /)+4=0 is
(1) 0° (2) 30° (3) 45° (4) 90°
18. The coordinates of the point where the line 7 = (6; —}—3l€)+t(—f +4l€) meets the plane
Fi+j-k)=3 are
(1) (2"170) (2) (75_19_7) (3) (1525_6) (4) (55_1:1)
19. Distance from the origin to the plane 3x—-6y+2z+7=0 is
(1o )1 (3) 2 (4) 3
20. The distance between the planes x+2y+3z+7=0 and 2x+4y+6z+7=0 is
L @2 ORd @ =
242 2 2 NG
21. If the direction cosines of a line are l, l, l, then
c ¢ c
(1) c=43 (2) c=+3 (3) ¢>0 (4) 0<c<l
22. The vector equation 7 = (i —2] —IQ) +1(6] —12) represents a straight line passing through the
® points
(1) (0,6,—1) and (1,-2,-1) (2) (0,6,—1) and (-1,-4,-2)
(3) (1,-2,-1) and (1,4,-2) 4) (1,-2,-1) and (0,-6,1)
23. If the distance of the point (1,1,1) from the origin is half of its distance from the plane
x+y+z+k=0, then the values of k are
(1) £3 (2) 6 (3) -3,9 “4) 3,-9
24. If the planes 7.(2i — 4] + lg) =3 and 7.(4i + j - ,ulg) =35 are parallel, then the value of 4 and
M are
1 1 1 1
1) —,-2 2) ——,2 3) ——,2 4) =,2
(1 5 () 5 3) 5 4) )
25. If the length of the perpendicular from the origin to the plane 2x+3y+Az=1, 1>0 is
l, then the value of A is
(1) 23 ) 32 3)0 4) 1
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SUMMARY

. For a given set of three vectors a,band ¢, the scalar (ax b )-C is called a scalar triple product

- =

of a,b,c.

. The volume of the parallelepiped formed by using the three vectorsd,b, and ¢ as

co-terminus edges is given by |(5 xb )-¢ | .

The scalar triple product of three non-zero vectors is zero if and only if the three vectors are coplanar.

4. Three vectors d,b,¢ are coplanar, if, and only if there exist scalars 7,5,# € R such that atleast

10.

I1.

12.

13.

14.
15.
16.

17.

‘ ‘ Chapter 6 Vector Algebra.indd 279 @

one of them is non-zero and 7d—+sb 4+ =0.

- —

. If a,b,c and p,&,; are any two systems of three vectors, and if ; = xlc; + yIB +ZIE,

XN g
q=x,a+y,b+z,c,and, r = x;a+y,b+z,c, then [p,q,r]z X, ¥V, Z, [a,b,c].

X3 V3 4
For a given set of three vectors a,b ,c,the vector ax (l; X ¢) is called vector triple product .

For any three vectors @, b, ¢ we have ax (b x&)=(a-¢)b—(a-b)c .

. Parametric form of the vector equation of a straight line that passes through a given point

with position vector a and parallel to a given vector b is ¥ =a+tb, wheret€ R.

Cartesian equations of a straight line that passes through the point (x,, ,,z, ) and parallel to a

4 _ YN _z72%

bl b2 b3

e . x
vector with direction ratios b,,b,,b, are

0 VTN 275 g of the form (x, +tb,, y, +1b,, z, +1b;) ,t€ R.
b b, b,

Parametric form of vector equation of a straight line that passes through two given points

Any point on the line al

with position vectors a and bis F=a +t(l;—c7) ,te R.

Cartesian equations of a line that passes through two given points (x,,y,,z )and (x,,,,2,)
X=X _ V=N _2-%

TRk T Zy T4

If 6 is the acute angle between two straight lines F=d+sband F=C+1d, then

are

(lB-d
0=cos | ==t
glid
Two lines are said to be coplanar if they lie in the same plane.
Two lines in space are called skew lines if they are not parallel and do not intersect

The shortest distance between the two skew lines is the length of the line segment perpendicular
to both the skew lines.

The shortest distance between the two skew lines 7 = & +sb and 7 = ¢ +d is
(6-a)-(bxd)

5= Y
|b><d|

, where |bxd |=0.

279 Applications of Vector Algebra
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18. Two straight lines 7 = d+sb and 7 = & +1td intersect each other if (¢ —a)- (Z;XJ) =0
) ) (e-a)xb
19. The shortest distance between the two parallel lines ¥ =a+sband ¥ =c +tbis d = |E| )
where \E |=0
20. If two lines > =2 =N 2754 g X170 Y7 275 intersect, then
bl b2 b3 dl d2 d3
Sy T T 2T
b, b, b, |=0
dl d2 d3
21. A straight line which is perpendicular to a plane is called a normal to the plane.
22. The equation of the plane at a distance p from the origin and perpendicular to the unit normal
vector d is 7-d = p ( normal form)
23. Cartesian equation of the plane in normal form is Ix+my +nz = p
24. Vector form of the equation of a plane passing through a point with position vector @ and
perpendicular to 7 is (F—a)-7n=0.
25. Cartesian equation of a plane normal to a vector with direction ratios a,b,c and passing through
a given point (x,,,,z)is a(x—x,)+b(y—y)+c(z-z)=0.
26. Intercept form of the equation of the plane 7 -7 =g having intercepts a,b,con thex,y,z
: . Xy z
@ axes respectively is —+=—+—=1.
a c
27. Parametric form of vector equation of the plane passing through three given non-collinear
points is 7 = d+s(b—a)+t(¢—a)
28. Cartesian equation of the plane passing through three non-collinear points is
X=X Y=y z—Z
=X Y=y z,-z|=0.
Xy=X% V3= 2374
29. A straight will lie on a plane if every point on the line, lie in the plane and the normal to the
plane is perpendicular to the line.
30. The two given non-parallel lines 7 = a + sband 7 =¢ +1d are coplanar if (¢ —a)- (5 xd ) =0.
31. Two lines >t =X "N 272 g =0 V70 275 4 coplanar if
b b, by d, d, d
Xo=Xh N~ 274
b1 bz b3 =0
d, d, d,
32. Non-parametric form of vector equation of the plane containing the two coplanar lines 7 = a + sb
and7 = +td is (F—d)-(bxd) = 0 or (F=¢)-(bxd)=0.
— i ﬁ
33. The acute angle & between the two planes 7 -7, = p, and 7-ii, = p, is 8 = cos™" “jnfu
1|2
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34.

35.

36.

37.

38.

39.

40.

41.

42.

S|

S

If 8 istheacuteangle betweentheline 7 = a + th andthe plane 7 -7 = p ,then § = sin”! — | |
g

The perpendicular distance from a point with position vector # to the plane 7 -7 = p is given
7]

The perpendicular distance from a point (x,,y,,z)to the plane ax+by+cz=pis

_|ax, +by, +cz, - p|

o}
Ja? +b2 + ¢

The perpendicular distance from the origin to the plane ax+by+cz+d =0 is given by
9]
Va2 +b* +¢?
The distance between two parallel planes ax+by+cz+d, =0and ax+by+cz+d,=0 is
|d1 —d, |
Na' +b* +c’ .

The vector equation of a plane which passes through the line of intersection of the planes

5:

given by

—

r-n =d, and 7 -7, =d, is given by (¥-n,—d,)+ A(¥-1i,—d,) =0, where L €R is an.
The equation of a plane passing through the line of intersection of the planes a,x + by + ¢,z =d,
and a,x+b,y+c,z=d, is given by

(ax+by+cz—d)+Nax+by+c,z—d,)=0

The position vector of the point of intersection of the line 7 =a+¢b and the plane 7 -7i = p

1S ﬁzﬁ+[%]§,where b-ii#0.
‘n

If v is the position vector of the image of u in the plane 7 -7 = p ,then

+2[p—(ﬁ4n]ﬁ

V=i
nf

- [BY

will

( ICT CORNER

QR code. GeoGebra work book named "12th Standard Mathematics"
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12.

2. x=2,y=1z=-1
4. 18 days, 36 days

2. 84

®
ANSWERS
Exercise 1.1
1 1 -1 [2 2 1
(i) - i) |-3 1 1 Qi) L2 1 -2
1 11 - 1) — —
-6 -3 3
9 -5 -1 1 +2 2
. 6 -1 -1 1 1 -1 5 s
(0~ i) —|-1 6 —1| Gi) ~[-3 1 1|4 A=t
21-1 =2 28 2 71-1-5
-1 -1 6 9 5 -1
6 2 1 0 2 0 2 0 -2
+5 2 2 9 J_ré 6 2 —-6| 10. 10 2 0
6 2 3 -3 0 6 2 0 2
0 1
13. 15. HELP
0 0

Exercise 1.2

L)1 G2 (i)2 (V)3 (v)3 2. ()2 ()3 ()3
51 -2 31 -40 16 9
. () [_ ] Gi) |-3 -3 1 (i) | 13 -5 -3
-5 2
2 4 1 5 -2 -1
Exercise 1.3
() x=-1L,y=4 (i) x=2,y=—4

(i) x=2,y=3,z=4 (iv) x=3,y=-2,z=1
3.3 18000, X 600
5.%2000, % 1000, % 3000
Exerc{se 1.4
(1) x=-2,y=3 (ii)x:E,y=3
(1) x=2,y=3,z=4(iv) x=1,y=3,z=3
3. 50% acid is 6 litres, 25% acid is 4 litres

4. Pump A : 15 minutes, Pump B : 30 minutes

() x=-1Ly=4,z=4
2. a=2,b=1,c=6

T 30/-, T10/-, T 30/-, yes
Exercise 1.5

(i) x=3,y=1,z=2

3.3 30000, T 15000, T 20000

4. a=1,b=3,c=-10, yes

XII - Mathematics
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() x=y=z=1

Exercise 1.6
1 1
i) x=—(7-5t),y=—(Gt—1),z=t,t€R
(i1) 10( ),y 10( ).z

282
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(ii1) No solution

(1) k=1
()A=5andu#9

1
(iv) x:E(S—t+2),y=s,z=tands,teR

(i) k#zLk#-2
(i) A#5andpue R
Exercise 1.7

1. ) x=—t,y="2t,z=t,telR

(i) k=-2

(i) A=5u=9

(i1) Trivial solutions only

‘ ‘ Answers.indd 283

2. (1) A28 (i) A=8
3. 2C,Hy+70, — 6H,0+ 4CO,
Exercise 1.8
1 2 3 4 5 6 7 8 9 10
2 3) @) 3) 4) 2 4 4 (2 (D
11 12 13 14 15 16 17 18 19 20
(2) 4 (D @) 4) 3) 2 (D 4 4)
21 22 23 24 25
(2 4 4 4 @))
Exercise 2.1
1. —1—i 2. 1+i 4.0
5.1 6. 1-i
Exercise 2.2
1. (i) 4+i (i) 8—i (iii) 7+5i (iv) 1+17i
(V) 15+8  (vi) 15+8i
3. x=-1, y=1
Exercise 2.3
3. -z, =-2-5i z-l—i(z—Si)
T ’ ' 29
2, =3+4i, z :LS(_s+4i)
2 =—1-i | ! =%(1—i)
Exercise 2.4
) . ) . e 201440
1. (i) 7-5i (ii) Z(l—l) (iii) i
2. (i) 54— (ii) y (i) —y—4
X +y
30 L), Lo @ -
- 25 5 2
6. (1)6 (1) 3
283 Answers
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1. (i) 3 (i) 272 (iii) 32 (iv) 50

3. 11460

8. 10 10. (i) i(%+i%] (ii) J_r(ﬁﬂ'zﬁ) (iii) £(2-3i)
Exercise 2.6

3. (i) y* =3 (i) x—y=0 (iii) x+y=0 (iv) X’ +y° =1

4. (i) 2+i,3 (i) —1+2i,1 (iii) 2-41‘,%

Exercise 2.5

5. (1) X’ +y*—8x—-240=0 (i) 6x+1=0

Exercise 2.7

. () 4(cos(2k7r+§)+ isin(2k7r+§)),k ez

(i) 243 (cos(2k7r—%)+isin(2k7£—%)} kel
(i) 2+/2 (cos(zm—%”}isin(zkﬂ—%”)} keZ
. LY/ 2 hY/4
(1V)\/5[005(2k7£+§)+1sm(2kn’+5]} keZ

1 o =i
2. (1) —=(1+1) (i) —
V2 2 Exercise 2.8
3.1 5. 3cisT, -3, 3cis>% 7. -1
3 3
9. (i) 242 on (i) 242 or (iii) 2+/2 i
Exercise 2.9
1 2 3 4 5 6 7 8 9 10
(H (H (1) (2) (3) (H 4) (1) (D) (1)
11 12 13 14 15 16 17 18 19 20
(2) (2 (4) (2 (2) (3) (H (3) 4) (4)
21 22 23 24 25
(2) 3) 4) (1) (D
EXERCISE 3.1
1. 60
2. ()X’ —6x"+11x—6=0 (i) ¥’ =3x+2=0 (iii) x’ —4x* —4x+16=0

3. ()X’ +4x" +12x+32=0

XII - Mathematics 284
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(i) 4x° +3x° +2x+1=0 (i)x’ —2x"+3x—4=0
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kb=

2
231 510 6.64-1 7. Zizﬂ
3 By ad
2x*—3x—20=0 11.x°+x-12=0
Exercise 3.2
. When k& <0, the polynomial has real roots.

When k =0or k=8, the roots are real and equal.
When 0 < k <8 the roots are imaginary.
When k > 8 the roots are real and distinct.

2 2

X’ —4x+7=0 3. x*’—6x+13=0 4, x*—16x*+4
Exercise 3.3
331 ) 24, 3226 4 k=2, 2,@
2 3’3 3 2
_ o1 3
1—2i,1+2i,ﬁ—\6,1+*/§,1 V37 6. (),—3Gi) 1,1, 2 7. 43,45
2 2 2 2 4
Exercise 3.4
{23,780 (i) 3,3,34417,3-V17 2. 1,—2,_”2*6,_1_26}

Exercise 3.5

(1) nm+ (— 1)" %,n € Z ,no solution for sinx=4 (i) 2,—

W | N

b

A=

2 3
(1) x=1 (ii)) no rational roots 3. 4" 4. b—,9i2
4a b
1 (ii)+1’_1’—3+«/§’—3—\/§
3 2 2
2,3 7. 1,3,—land—2
3 2

@ 2,3,

2

1
2

Exercise 3.6
It has at most four positive roots and at most three negative roots.
It has at most two positive roots and no negative roots.
It has one positive real root and one negative real root.
no positive real roots and no negative real roots.
Exercise 3.7

1 2 3 4 5 6 7 8 9 10

“) () 3) () 3) (4) M €) (1) 2

285 Answers
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Exercise 4.1
T
1. () x=nm, n=0,£1,+2,...+10 (ii) x=(4n—1)? n=0,+1
2. ()1, 27”(11) L, 6r  Gi) 47 4 () % (ii) —%
5 x=0 6. (i) {-1 1} Gi) [0.1] 7. %
Exercise 4.2
1. () x=(2n+1)§, n=0,+1,+2, 3 £4, +5-6 (i)x=(2n+1)7, n=0, £1, £2, -3
2. -ZgJ0, 7] 3. True 4. Z
6 3
5. (i) 5?” (i) —% (iii) ?‘1‘—;’ 6. () [-5.5] (i) [-11]
7. O<x<% 8. ()0 (ii) 117—2”
Exercise 4.3
® 1. () [-3,3] (i) R 2. (i) % (i) —%
3. (i) %” (i) 1947 (iii) —0.2021 4.() ~ (i) —% (iif) %
Exercise 4.4
1. (i)% (ii) % (iii) —% 2.(i) —% (ii) cot1(2)—% (iii) —%”
Exercise 4.5
1. ) —% (i) —% (iii) 5-27
2. () T (i) ——— (i) 2
R V9x* —6x+2 B—dx -4y’
3. (i) % (i) 0 (i) %7 8.%
9. (i) x=13 (i) x=2=2 (ifi) x = 2nm, x=nr+~, nel
1+ ab 4
(iv) x=+3
10. 3

286
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Exercise 4.6
1 2 3 4 5 6 7 8 9 10
3) () 3) (1) () (1) 3) (1) “4) 4)
11 12 13 14 15 16 17 18 19 20
3) () (2) (1) 3) 3) () (2) 4) 4)
Exercise 5.1
1. ¥’ +y*£10y=0 2.(x=2)"+(y+1)>=50
3. X+ +4x+4y+4=0 or ¥’ +y*+20x+20y+100=0 4.x° + )’ —4x—6y—12=0
5. X" +y"=5x+3y-22=0 6. x’+y* =1
7. X’ +y"—6x—4y+4=0 8. %12
9. x—5y+8=0, 5x+y—12=0 10. out side, inside, outside

‘ ‘ Answers.indd 287

1

—_

12.

—_

98]

. y (1 V17 (3 3
() (0,-2),0  (ii) (-3,2),3 (iii) (5,—1}7 (iv) (5,—1),5
p=q=3,(,0),5

Exercise 5.2

. (i) ¥ =16x (i) 3x’=—4y (i) (y+2) =12(x=1) (iv) »’ =16x

Lxt ) Loox y ... lex® 7’ I
2. (1) —+=—=1 — +—=1 —=1 —t—=1
® 36 i 27 @) 9 25 (i) 625 " 25 (i) 8 " 16
P 2 ) 2 1 2 2 P
G A aiy 372 =) (i) -2y
16 20 12 24 16 64
Vertex Focus Eq}latlm.l of Length of
directrix latus rectum
. (0,0) (4.0) x=—4 16
ii. (0,0) (0,6) y=—6 24
iii. (0,0) (-2.0) x=2 8
iv. (1,-2) (1,-4) y=0 8
v (1.2) (3.2) x=-1 8
287 Answers
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S Type of conic Centre Vertices Foci Directrices
) . 25
i, Ellipse (0,0) (£5,0) (+4,0) x=ts
10
i. Ellipse (0,0) (0.£410) | (0.+7) y=tr
25
iii. Hyperbola (0,0) (£5,0) (£13,0) x= ig
. 16
iv. Hyperbola (0,0) (0,%4) (0,£5) y=t—
8.
Type.of Centre Vertices Foci Directrices
Conic
31
i. | Ellipse (3,4) | (3.21).(3,-13) | (3,12),(3,—4) _i -
y= T
47
X = ?,
ii. Ellipse (-L2) | (-11,2),(9,2) (-7,2),(5,2) 53
xX=—
3
i
i, | Hyperbola | (=3,4) | (~18.4),(12,4) | (-20,4),(14,4) 376
"
y= 2 +2
—1,2++/41 N7
iv.| Hyperbola | (-12) | (-L7),(-1,-3) ( ) val
(_152_\/ﬂ) y:__25+2
Ja
(42+3v2), | @4,-2+6), y=-2+36,
v. Ellipse (4.-2)
4-2-32) | “4-2-V6) y=-2-3J6
vi. | Hyperbola
yp (2-3) | (3-3).(L-3) | @2++10-3), x=%+2,
(2-+/10,-3) 110
X=——+2
J10
XII - Mathematics 288
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Exercise 5.3

1. hyperbola 2 circle 3. ellipse 4. circle

Exercise 5.4
l. x—=y-3=0,x-9y+13=0 2.
3. (-3.1) 4.

5. x-2y+8=0

x—=y+4=0

Exercise 5.5

1. 84m 2. 26.6m
4. y*=4.8x, 1.3m 5. 3.52m, 5.08m
7. ¥ 8. 33m 9. tan™' (g

Exercise 5.6

5. hyperbola

6. parabola

10x—3y+32=0, 10x—3y—32=0

6. 4x—3y—6=0,3x+4y—42=0

3. 3m
6. 90.82m, 148.91m

2 2

X y_l

9 16

1 2 3 4 5 6 7 8

M@ |G| 0| d) 06

@ | @ | O[] @ ]O

14 15 16 17 18 19 20 21 22 23 24 25 ---
(3) (D 4) 4) (D (1) (2) (2) 3) (3) (3) 2 | -
®
Exercise 6.1
11. 80 units 12. 69 units

13, Ji79, >~ T

“ 1797 1797 V179

Exercise 6.2

1. 24 2. 720 cubic units 3.
4, +12 5. ¥

Exercise 6.3
1. (i) —2i+14)-22k (i) 22i+147+2k

7. 1=0, m=10, n=-3 8. 9:%

Exercise 6.4

14. —96i+1157+15k

6. coplanar 7.2

5. -74

L (?—(4§+3}—71€))x(2§—6}+71€)=6, x-4_y-3_z+7
2 6
x+2:y—3:Z—4

7

2. r=(-2i+3)+4k)+(-4i+5j—6k), =

(o)

[2,0,4—7], (0,16,-11)
3773

289
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2 3 6 = ~ A A ~ ~, A
4. (7,7,7), F=(Si+6]+7k)+(2i+3)+6k) or
F=(7i49)+13k)+(2i+3]+6k),
x=5 y-6_ z-7 or x=7 y=9 z-13
2 3 6 2 3 6
5.()0° ()~ (i)~ 6 L 7 a=18.b=2 8. 1
6 2 2 3

Exercise 6.5
x—=5 y—2 z-8

1. 7=(5§+2}+81€)+t(2§+}—21€),te R,

1 -2
7 . 9 .
2. —=units 3. — 4. (6,2,1) 5. 2 units
J5 2
6. Y83 unics 7. (1,6,0), X0 y=4 272
J6 —4 2 )
Exercise 6.6
L7 3i—4j+5k _7 5 Eji’—_4; i 12 +3j -4k _5. 5
542 13713713 13
® 3. 7-(§+3}+51€)=35;x+3y+52=35 4, 7-(;+}'+1€)=2;x+y+2=2 ®
) . ) X y z
5. x -intercept =2, y- intercept=3, z- intercept =—4 6. —+—+—=3
u vow

Exercise 6.7
- F(i-2j+4k) =205 x—2y+42-20=0
f.(3§+4}'—51€)=9; 3x+4y-52-9=0
3, F:(2§+2}'+1€)+s(—§—4}‘+2I€)+t(3?—4}'+51€)s,tER;

o =

12x—11y—16z+14=0

4, F-(§+1o}'+71€):9; x+10y+7z-9=0

5. 17:(;—}4-312)+s(2§—}+4l€)+t<§+2}+l€)s,tER;9x—2y—52+4=0

6. 7:(3§+6}—2%)+s(—4§—8}'+8/€)+r(3§—2}')s,teR; Fo(2i+3)+4k) =16
2x+3y+4z-16=0

7. F+(3i+5)-7k)=6; 3x+5y-7z-6=0

Exercise 6.8

L (17147 = 24k) = —172 2. x+2y—z—-4=0
3. m=+2 4. 22,2, y+z+1=0, y—z+1=0
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1. 15x—47y+28z-7=0

3. sin™ 8
21

5. 2x—3y+5z+11=0,

7. (2,2,0), sm-‘[32

4

38

Exercise 6.9
2. 5x—1ly+z-17=0

g 2
4. cos (m)

6. L units

NE

8. (3,1,— 1) ;\/ﬁunits.

Exercise 6.10

1 2 3 4 5 6 7 8 9 10
“4) A3) (1) (2) (1) 3) (1) (1) 1) (2)
11 12 13 14 15 16 17 18 19 20
3) (1) (2) 4) 4) ) 3) 4) ) (1)
21 22 23 24 25
() 3) “) A3) 1)
® ®
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